
Raising the Bar for Data Virtualization
A Whitepaper

Rick F. van der Lans
Independent Business Intelligence Analyst
R20/Consultancy

September 2020

Sponsored by

Copyright © 2020 R20/Consultancy. All rights reserved. All company and product names referenced in
this document may be trademarks or registered trademarks of their respective owners.

Copyright © 2020 R20/Consultancy, all rights reserved.

Table of Contents

1 Introduction 1

2 New Data Virtualization Requirements 2

3 Requirement 1: Limitless Scalability 4

4 Requirement 2: Full Leverage of Cloud Platforms 7

5 Requirement 3: Functional Extensibility 9

6 Requirement 4: Processing of Streaming Data 10

7 Requirement 5: Fast Software Development 12

8 Requirement 6: Transaction Processing 13

9 How fraXses Supports New 14

10 Closing Remarks 17

 About the Author 18

 About Intenda 19

 About fraXses 19

Raising the Bar for Data Virtualization 1

Copyright © 2020 R20/Consultancy, all rights reserved.

1 Introduction

The Requirements for Data Virtualization Have Escalated – Data virtualization technology has been accepted
and the use cases are becoming more functionally richer. Gartner has indicated that data virtualization
has reached the Plateau of Productivity. Data virtualization is not an exotic technology anymore, but has
become a mature and widely accepted solution for many organizations.

However, since its years of introduction, the requirements for data
virtualization technology have escalated for several reasons. First,
organizations deploy data virtualization so differently from years ago. For
example, the number of users accessing a data virtualization environment
has grown; it is being deployed for a wider range of use cases; much more
data is being processed; the complexity of applications and queries has increased; and the importance of
metadata management has increased.

Secondly, because of the organization’s cloud strategies, they want to run their data virtualization
platforms on cloud platforms, such as Amazon, Google, and Microsoft Azure. This has introduced a new
requirement: data virtualization platforms need to exploit the full power of cloud platforms. Technically,
they should be able to really exploit the enormous potential of cloud platforms with respect to the almost
limitless performance and dynamic up and down scalability. Additionally, data virtualization platforms
need to offer a flexible, pay-by-the-sip fee structure dependent on resource usage. Organizations expect
data virtualization platforms not to run ‘on’ a cloud platform, but ‘inside’ it.

Extending Data Virtualization – Due to this success, organizations have started
to push the limits of what a data virtualization platform should support. As
a result, vendors of data virtualization platforms need to raise the bar with
respect to many features of their products. In particular, the following ones
should be extended and improved:

1. Limitless scalability
2. Leverage of cloud platforms
3. Functional extensibility
4. Streaming data
5. Fast software development
6. Transaction processing

This Whitepaper – This whitepaper focuses on these six features. The first two deal with performance and
scalability and how well the products can exploit the potential power of cloud platforms. The third,
functional extensibility, relates to the ability offered to customers or other parties to extend the product’s
functionality. Feature four, streaming data, relates to the increasing user demand for working with (near)
real-time data. Vendors must be able to improve and extend their product quickly, which is feature five.
Allowing data virtualization users to insert, update, and delete on the underlying data sources is the sixth
feature is called transaction processing. Each feature is described in detail and the importance is
explained.

This whitepaper also describes how Intenda has improved the internal architecture of the fraXses
data virtualization platform and how the product deals with these six features to make it future-proof and
suitable for new requirements and workloads.

Data virtualization has
become mature

technology.

The bar for data
virtualization is raised.

Raising the Bar for Data Virtualization 2

Copyright © 2020 R20/Consultancy, all rights reserved.

2 New Data Virtualization Requirements

Raising the Bar for Data Virtualization – Organizations keep raising the bar for all kinds of IT technologies.
This is especially true now that we have entered the big data era. More data needs to be processed, more
users need to be supported, and their requests are becoming more and more complex. This is
experienced by vendors of all kinds of technologies and tools, including data science tools, database
platforms, messaging technology, and data warehouse automation tools.

Evidently, vendors of data virtualization platforms recognize this customer-push as well; they
cannot rest on their laurels. As the bar for data virtualization is raised, they must extend and upgrade their
products in all areas. This section describes the key data virtualization features that require extending or
upgrading to make them future-proof. Note that this is not an exhaustive list, but these are the key
features.

Limitless Scalability – As indicated, the bar is also raised with respect to the workload. New applications
accessing a data virtualization platform must support more users, handle more and more complex
queries, and process much more data. To make sure that a data virtualization platform does not become
the bottleneck in the entire architecture, it must somehow support nearly limitless scalability.

Leverage of Cloud Platforms – Cloud platforms, such as Amazon, Google, and Microsoft Azure, are becoming
the preferred platform for most forms of data processing. This is also true for data virtualization. In
principle, cloud platforms offer practically limitless resources for storage, processing, and memory. Data
virtualization platforms must be able to exploit all these resources to avoid becoming the bottleneck in
large environments. Additionally, they must be as resource-efficient as possible to keep the costs low.

Functional Extensibility – As with other products, each new version of a data virtualization platform offers
more functionality. Most new functionalities are useful for a large group of organizations. It is important
that organizations with very specific functional requirements can easily extend the data virtualization
platform themselves. For example, if organizations need to use a very specific and homemade engine for
financial calculations, it must be possible to embed that engine within the data virtualization platform.

Streaming Data – There was a time when real-time data analytics was exotic
or special, but not anymore. An increasing number of data consumers
demands real-time data (or zero-latency data). For some, every second or
microsecond counts. When data arrives too late, it may introduce
problems or kill an opportunity. We have clearly entered the age of real-
time analytics and reporting. Currently, most data virtualization platforms do not support real streaming
of data. Most data virtualization platforms require that data is first stored before it can be accessed and
processed. Supporting these real-time requirements for streaming data becomes a necessity.

Fast Internal Development – Development in the software industry is not slowing down and organization
requirements are getting more complex. It is important that vendors find ways to speed up their own
internal software development. Developing all the new functionality itself, may not be fast enough. Other
ways must be deployed that lead to faster development of data virtualization functionality, for example,
by allowing other parties to develop modules.

Transaction Processing – Currently, the majority of data virtualization platforms is used in read-only
environments, such as business intelligence and data science environments. Data is extracted from source

Support for real-time
data streaming has
become a necessity.

Raising the Bar for Data Virtualization 3

Copyright © 2020 R20/Consultancy, all rights reserved.

systems and delivered to the data consumers. The number of environments that wants to use data
virtualization for inserting, updating, and deleting data in the source systems as well is growing.
Therefore, data virtualization platforms need to support transaction processing or write back. Transaction
processing must be as independent of storage technology as query processing already is.

As indicated, this whitepaper focuses on these six features. Others are also important, such as the ones
described below.

Query Optimization – It is predominantly the intelligence and smartness of a data virtualization platform’s
query optimizer that determines the overall performance. Therefore, improving the query optimizer is an
ongoing process for the vendors. It started on the first day of product development and will continue until
the last day of a product’s existence. Data virtualization vendors have always devoted much research and
development time on improving the query optimizer, and they can’t stop now. Examples of several areas
where query optimization is expected to improve the coming years:

 More techniques for optimizing distributed joins.

 AI-based algorithms to optimize queries based on the performance of the previous execution of
similar queries.

 Dynamic query optimization that changes the execution plan midflight when initial assumptions
turn out to be incorrect.

Caching Data – Caching mechanisms and features must be extended. Examples:

 More ETL-like caching mechanisms are needed in case the amount of data to be cached is too
extensive and the update frequency is too high for a more classic caching approach.

 Live refreshing is necessary to keep cached data as current as possible.

 Caching mechanisms are needed that keep track of history in case the source systems do not
support this feature.

Data Source Support – The list of data sources accessible by data virtualization platforms grows
continuously. This will and should not stop in the foreseeable future. Additionally, the modules
(sometimes called connectors or adapters) of data virtualization platforms accessing the data sources
must leverage the performance and functionality of the sources as good as possible. An additional new
requirement may be that these modules ‘understand’ the cryptic source data and transform it
automatically into meaningful data. Support for accessing data created by packaged applications needs to
be extended as well.

Data Security and Privacy – Due to increasing organization needs for protecting data from unauthorized and
improper use, data virtualization platforms need to implement more built-in data protection functionality.
For example, from a data privacy perspective, sophisticated functionality for pseudonymizing and
anonymizing is required.

Metadata and Master Data – Data virtualization platforms need to offer more functionality for entering,
storing, and managing user-defined and business-oriented metadata. For example, functionality for
importing metadata specifications from other tools is required. Besides an integration and delivery
platform for data, a data virtualization platform must become an integration and delivery platform for
metadata as well.

Raising the Bar for Data Virtualization 4

Copyright © 2020 R20/Consultancy, all rights reserved.

3 Requirement 1: Limitless Scalability

Limitless scalability is the first feature that needs to be extended and is described in detail in this
whitepaper.

Porting to Cloud Platforms – According to the Gartner’s hype cycle1, data virtualization has reached the
Plateau of Productivity. This means that the technology has matured and is being deployed in a wide
range of use cases. Now that data virtualization has been fully adopted by the market, the first customers
are expanding their use cases and are deploying data virtualization in more intense workloads. Also, new
customers are using data virtualization for more complex and data-heavy systems. In both cases, it means
that a data virtualization platform needs to be able to handle more users, more requests, more data,
more data sources, and more complex requests. This requires that the internal architecture of a data
virtualization platform offers a high level of scalability to ‘grow’ in line with the growing customer
demands.
 As indicated, cloud platforms offer almost limitless resources. Is
making a data virtualization platform available on cloud platforms sufficient
to provide that level of scalability? Not really. Without many changes, most
software programs and tools, originally developed for on-premises
deployment, can be ported to cloud platforms. Being able to run on cloud
platforms has several benefits, however, a straightforward port may not
result in leveraging the potential performance and scalability offered by these platforms. Running on a
cloud platform is not sufficient, running within the cloud platform is the goal. A data virtualization
platform must exploit cloud platforms to the max. Additionally, the product must be as resource-efficient
as possible. Just throwing resources at the solution to get a higher level of scalability, can make the
solution expensive.

Whether a data virtualization platform is able to fully leverage the potential scalability of a cloud
platform depends primarily on its internal architecture. The two main challenges are (1) to distribute the
processing across as many processors and/or cores as possible to get a high parallelization level and (2) to
distribute processing across modules as efficiently as possible to avoid skewed usage of processors, which
can lead to one or more processors becoming the bottleneck. This section describes some of the internal
architectures supported by data virtualization platforms and how well they support parallelization.

Multi-Threaded Architecture – Multi-threading is a classic technique that allows processing of requests to be
executed in parallel; see Figure 1. Instead of having one single process that executes all the processing on
one processor (or core), the work is divided over multiple processes (threads). In such an architecture,
there is always a central, master process that receives all the user requests which it to the threads for
processing.

How the processing work is distributed between the master and the threads has a major impact
on how efficient parallel processing is. Imagine that a SQL database platform executes queries by
performing the following tasks: syntax analysis, user authorization checking, view substitution, query
optimization, and query execution. Technically, it may be possible to push all this processing to the
threads, which means that most of the work is processed by the threads and executed in parallel, which
improves the overall workload. This definitely raises the level of parallelization. However, if only query

1
 Gartner, Hype Cycle for Data Management, 2019, July 2019; see

https://www.gartner.com/en/documents/3955768/hype-cycle-for-data-management-2019

A data virtualization
platform needs to run

not on but within a
cloud platform.

Raising the Bar for Data Virtualization 5

Copyright © 2020 R20/Consultancy, all rights reserved.

execution is performed by the threads and the rest by the master processes (as is the case in Figure 1),
less processing is executed in parallel and the master could become the bottleneck.

Figure 1 In a multi-threaded architecture processing of requests is ditributed between a master process and some
paralell threads.

The three main drawbacks of a multi-threaded architecture are: the central master process could

become the bottleneck and the single point of failure; the number of threads that can be handled is
normally limited and therefore cannot be scaled to hundreds of parallel processes; and it is a resource
hungry architecture. The performance is determined by how much of the work is executed by the threads
and how much is done by the master process.

Note: From the perspective of query execution, this architecture offers what is sometimes
referred to as inter-query parallelization. Parts of the query are not automatically processed in parallel.

Multi-Instance Architecture – The multi-instance architecture for server products is quite a heavyweight
solution. Multiple instances of the full product are executing in parallel; see Figure 2. This architecture
needs a load balancer that receives all the user requests and distributes them across the instances. The
number of active instances determines the level of parallelization. In principle, each instance itself can
have a multi-threaded architecture.

The drawback of this architecture is that the instances are ‘large’ and resource-hungry processes.
Each one is responsible for executing many tasks; as shown in Figure 2. All those tasks are operational
inside the instances. However, the functionality of all the tasks is not continuously required. For example,
the task responsible for executing queries is more frequently used and consumes much more resources
than the task retrieving metadata to check, for example, authorization rules. Unfortunately, these tasks of
an instance cannot be independently scaled.

Starting multiple instances for some tasks, such as query optimization, can make sense, because
that feature is used frequently by all requests. But this does not apply to other tasks that are less
frequently used, such as the task to create new views. But since they are all part of the instance, they are
all replicated.

On a cloud platform, it is important that modules are started and stopped dynamically when the
module is needed. Because of their size, starting and stopping full instances takes time. As indicated,
these are not lightweight processes.

Note: As with the multi-threaded architecture, this architecture offers inter-query parallelization.

Raising the Bar for Data Virtualization 6

Copyright © 2020 R20/Consultancy, all rights reserved.

Figure 2 In a multi-instance architecture processing of requests is distributed by a load balancer across heavy-weight
processes.

Microservices Architecture – An internal architecture that is very suitable for
limitless scalability is the microservices architecture; see Figure 3. In a
microservices architecture all the tasks are not implemented in one big
monolithic process, but in different services that all operate independently
of each other. On the operating system level, the product consists of many
services each functioning as separate processes. For each service several service instances can be started.
A scheduler or orchestrator exists to receive all the incoming requests. The orchestrator then passes the
requests to the necessary service instance. This service instance processes the request. When it needs
other services, it sends them requests. Communication between the services is normally implemented
using lightweight protocols, such as JSON/REST and Apache Kafka, to send requests and replies back and
forth between the service instances.

Figure 3 In a microservices architecture processing of requests is distributed across independent service
instances.Different services can have different numbers of instance active.

A microservices
architecture can offer

limitless scalability.

Raising the Bar for Data Virtualization 7

Copyright © 2020 R20/Consultancy, all rights reserved.

The orchestrator determines how many instances of each service need to be started. Of each service, a
different number of services can be started, allowing the ones with an expected heavy workload to have
more instances than the ones invoked occasionally. Since services are lightweight processes, they can be
started and stopped easily and quickly. This makes it easier to dynamically adjust the number of
operational service instances based on the workload changes.

A microservices architecture needs a mechanism to receive the requests and invoke the service
instances. Two popular mechanisms exist: orchestration and choreography. Orchestration uses a
centralized approach, in which the communication between services is handled by and passes through the
central orchestrator. It’s like a parcel service where all the received parcels are first shipped to a central
warehouse and from there distributed to the recipients. Choreography gives services more freedom to
execute requests. The services can interact with each other directly without some centralized module. It
would be like everyone sending their parcels directly to the recipients without a central warehouse.
Technically, both mechanisms can be used by a product.

Serverless Architecture – Server processes, such as database servers and data virtualization platforms, have
a tendency to be started and then wait for requests. When no requests are received, they still run and
consume memory, I/O, and CPU resources. A product with a serverless architecture does not use server
processes. In the ideal world, when such a product does not receive any requests, all the processes are
stopped. The next request wakes up the product.

The term serverless causes some confusion, as it can be interpreted
as if a product does not run on server machines. This is not correct,
serverless means that the product operates with a minimum number of
continuously operating server processes. Microservices architectures are
normally serverless. If a product has a serverless architecture, it may still
access server processes, such as a database server. So, serverless does not
mean that there are no server processes, but as few as possible.

Parallel Query Processing – The multi-threaded, multi-instance, and the microservices architectures are able
to execute queries in parallel; inter-query parallelization. However, the execution of one individual query
itself is not by definition parallelized. If a query accesses tables with massive amounts of data, it can still
take a long time to process. The architecture of a data virtualization platform also needs to support
parallel execution of individual queries. This is called intra-query parallelization. Especially big data
environments demand this form of query execution.

4 Requirement 2: Full Leverage of Cloud Platforms

Every study shows the increasing use of cloud platforms for data processing. There are three dominant
reasons why organizations invest in cloud platforms:

 Unburdening the organization with regards to management.

 The enormous potential with respect to performance and scalability.

 A flexible fee structure based on resource usage.

This adoption of cloud platforms implies that data virtualization platforms must be available and, more
importantly, harness the full power of these platforms. This section explains what this means for data
virtualization platforms.

A serverless architecture
minimizes resource

consumption when no
requests are processed.

Raising the Bar for Data Virtualization 8

Copyright © 2020 R20/Consultancy, all rights reserved.

Unburdening the Organization – For many organizations the main benefit of cloud computing is unburdening.
Take a BI environment as an example. Designing, developing, running, managing, tuning, and changing BI
systems requires many software components and a wide range of analytical and technical skills. This is a
heavy burden for an organization. Specialists must be employed or hired; machines must be acquired and
installed; data needs to be backed up and recovered; new versions of the software must be installed, data
center space, computing power and desk space must be made available, and so on. These specialists need
to be trained when new products are installed and to keep their analytical skills on par. Running a BI
environment on-premises involves a major investment.

By migrating IT systems to the cloud, much of the work described above is no longer of concern to
the organization. That work is outsourced to the cloud platform and its vendors and this unburdens an
organization.

Limitless Scalability and Performance – Cloud platforms are basically extreme massively parallel processing
(MPP) environments allowing organizations to exploit almost endless pools of resources. Many tools and
applications that were initially developed for on-premises usage, have been made available to run on one
or more cloud platforms.

Being able to ‘run’ on a cloud platform does not mean that the product automatically exploits the
full power of the platform. For example, it is very likely that a product with a multi-threaded architecture
is limited in the number of threads it can activate. It is normally limited to one or two dozen threads. In
other words, it cannot exploit all the processing power available on the cloud platform. This is especially
true if most of the tasks are executed by the master process and not by the threads.
 It is important that the internal architecture of a data virtualization
platform really exploits all the power. In general, a microservices
architecture fits the architecture of cloud platforms best, the multi-instance
architecture is second best and the multi-threaded architecture is third. A
microservices architecture makes products elastic. Depending on changes
in the workload, the product can adapt itself by starting and stopping
service instances. Starting a service instance is fast and does not degrade performance. A data
virtualization platform with a completely monolithic architecture can barely exploit MPP.

A product developed for the cloud must have an internal architecture that can scale up, meaning
when more resources are required, they are dynamically added. But it also should be able to scale down
when resources are no longer required, because the workload has decreased. A data virtualization
platform must be able to scale up and down dynamically. Scaling down needs to be handled gracefully and
should never lead to cancellation of running requests.

Flexible Fee Structure – The flexible fee structure offered by cloud platform vendors is sometimes referred
to as pay-by-the-sip. Organizations only pay for the use of resources, such as I/O, memory, and
computing. Ideally, when a product is not processing requests, it should consume zero resources, meaning
no charges.

The multi-threaded and multi-instance internal architectures are definitely not serverless
architectures. As a result, their server processes are continuously operating, even when no requests are
received, and the organization pays for resource usage. In this case, the cloud vendor may support pay-by-
the-sip, but the server process is continuously drinking. It is like paying for a movie in a cinema, but not
watching it.

A product with a microservices architecture does not consume any or just a minimal amount of
resources when it is not executing any requests. And when the number of requests drops, service
instances are automatically stopped.

Data virtualization
platforms need to

exploit the full power of
cloud platforms.

Raising the Bar for Data Virtualization 9

Copyright © 2020 R20/Consultancy, all rights reserved.

How the product supports scale up and down also influences the
costs. When a system does not scale down automatically, but only
manually, the delay could lead to unnecessary resource consumption.

The bottom line is that efficient use of cloud platform resources
reduces chargeable costs. Therefore, data virtualization vendors must develop their products to minimize
resource consumption to dynamically adapt to changing workloads.

Multi-Cloud Strategy – Studies show that many organizations deploy a multi-cloud strategy, which means
that an organization uses multiple cloud platforms. Flexera2 reports that “in 2019, 84% of the
organizations rely on a multi-cloud strategy.” And according to InformationAge2 “60% of all businesses in
the sector expect their IT environment to be multi-cloud, integrating both on-premises and externally
hosted cloud infrastructure. Only 18% say they will solely rely on the public cloud.” Organizations may
have chosen for a multi-cloud strategy on purpose, but it may also be ‘enforced’ due to, for example, an
acquisition. It could also be that organizations have different cloud platforms in use, because some of
their software is only available on specific cloud platforms. Sometimes this is a conscious choice, for
example, to be able to migrate to another platform when the other one offers more functionality and/or
is more interesting in terms of price.

A multi-cloud strategy demands that data virtualization platforms are able to operate on all the
different cloud platforms. Data virtualization platforms should not restrict organizations from deploying
particular cloud platforms.

5 Requirement 3: Functional Extensibility

Built-in Functionality – Each data virtualization platform comes with many features for extracting,
transforming and securing data. They allow developers to use the full power of the popular SQL language.
And with some, if SQL is not sufficient, developers can use procedural SQL or lower-level languages, such
as Java and C#, to develop functionality.

But what if all that functionality is not sufficient or an efficient and fast solution cannot be
developed with the existing functionality? For such situations, it must be possible to extend the existing
functionality. One way to do this is to allow developers to extend the built-in functionality by developing
stored procured and functions. Unfortunately, some required extensions can be very hard to develop with
procedural SQL and if it works, it may be inefficient.

Therefore, a mechanism is required with which external modules can be embedded within the
data virtualization platform. It is important that these modules are regarded by the data virtualization
platform as first-class citizens. For example, if the platform uses a load-balancer for all its own modules,
then the external module must be managed by the load balancer as well; if multiple instances of an
internal module can be started to support scalability, then it must be possible to start multiple instances
of the external module as well; and if specific security rules can be defined for internal modules, it must
be possible to do the same for the external module. In other words, data virtualization platforms should
not make a distinction between its own and external modules.

2
 Hostingtribunal.com, Cloud Adoption Statistics for 2020; See https://hostingtribunal.com/blog/cloud-adoption-statistics/#gref

Efficient use of cloud
platform resources

reduces chargeable costs.

Raising the Bar for Data Virtualization 10

Copyright © 2020 R20/Consultancy, all rights reserved.

Below three examples of modules are described that are too complex to be implemented with the
standard features of most data virtualization platforms.

Example 1: Data Science Models – Imagine that a organization has developed an advanced data science
model using machine learning techniques that predicts churn risks for customers. This module can be
transformed into a service. It must be possible to embed this service as a first-class citizen module and the
data virtualization platform should treat it as one of its own native modules. Developers should be able to
invoke it as any other module.

Example 2: Data Privacy – Almost every organization stores personally identifiable information (PII) and
more and more laws and regulations exist for governing the storage and processing of such data.
Technically, this means that data needs to be pseudonymized and anonymized. Imagine that social
security numbers (SSN) of people must be transformed into an abstract value that does no longer identify
them. Additionally, the transformation of SSNs must be consistent across the tables to make it possible to
integrate data from multiple tables using the abstract values. It may also be needed to mask certain
column values to show only specific parts of the data. Functionality may be needed that uses statistical
techniques to determine whether a data consumer can still identify to whom the data belongs. For
example, if the employee data also indicates whether someone has won a Nobel prize, and if the result of
a report shows only one employee who has been awarded a Nobel prize, it is fairly clear who that is, as
most companies do not have that many Nobel prize winners on their payroll, let alone two.

Most existing data virtualization platforms do not offer such features. External modules are
needed to support such advanced capabilities.

Example 3: GEO/GIS – More and more applications need support for GEO/GIS functionality. This type of
functionality should not be limited to supporting data types, such as 2D and 3D points, lines, circles, and
shapes. In addition, functions are required that can process this data intelligently. Examples of such
functions are: calculating the distance between points, determining whether areas overlap, mapping zip
codes to 2D coordinates, and calculating travel time between points by public transport, car, or foot. Such
functions can consist of hundred thousands of lines of code. It would involve quite a number of
developers to develop and maintain this. A data virtualization platform needs to be able to embed such
modules and make access to them as transparent and simple as access to native functions.

Summary – In particular, very specific customer demands require data virtualization platforms to support a
plug-and-play architecture that allows customers to embed their own modules. Potentially, this can lead
to a market of homemade modules for a data virtualization platform. For example, if one customer
develops a perfect pseudonymization module, it could be made available to other customers.

6 Requirement 4: Processing of Streaming Data

The Era of Streaming Data – For an increasing number of data consumers, data needs to be real-time. For
some, every second or microsecond counts. When data arrives too late, it can cause business problems or
an loose opportunities. We have entered the era of streaming data and real-time analytics and reporting.
There was a time when real-time analysis was exotic or special, but not anymore.

This trend towards real-time data processing is in line with the consumer market for streaming
audio and video services. Almost all social media platforms are based on real-time streaming of data to
readers and viewers. As a result, more and more data consumers using data virtualization platforms are

Raising the Bar for Data Virtualization 11

Copyright © 2020 R20/Consultancy, all rights reserved.

demanding access to real-time data. In other words, they expect the data to be streamed.

Different Approaches of Data Delivery – Technically, several approaches exist for delivering data from source
systems to data consumers; see Figure 4. These approaches differ in various ways, but this chapter
focuses on their difference with respect to data latency as experienced by data consumers. Here, push
means that data is copied/moved from a source to a target and the former initiates this process. With
pull, the target initiates the copying/moving of data; it asks for the data.

Figure 4 Different approaches exist for delivering data to data consumers.

Periodic-pull-and-on-demand-pull – For a long time, ETL has been the primary technology for pushing data
from data sources to data consumers. An ETL solution offers a periodic-pull-and-on-demand-pull
approach. The ETL tool pulls the data in batches (periodically) from source systems and copies it to target
databases, such as data warehouses and data marts.

Next, when data consumers need data, it is pulled (on-demand) from the target database. Due to
the periodic approach, it may take quite some time before new data is pulled towards the target. In other
words, the data latency is high.

Continuous-push-and-on-demand-pull – The second style offers a continuous-push-and-on-demand-pull
approach. Data replication technology may be used to push data continuously in a near real-time fashion
from the source to a target database. Data consumers pull data (on-demand) from the target database.
With this approach, the database is close to up-to-date. The frequency of pushing the data to the target
determines the data latency experienced by data consumers.

On-demand-pull – Data virtualization offers an on-demand-pull-approach. Data is pulled from the source by
the data virtualization platform when it receives a request from a data consumer. Extracting data from a
data virtualization platform is also based on a pull approach, because data consumers ask the data
virtualization platform for the data. The data store accessed by the data virtualization platform

Raising the Bar for Data Virtualization 12

Copyright © 2020 R20/Consultancy, all rights reserved.

determines the latency of the data. For example, pulling data from a data mart offers a higher data
latency than pulling it from a transactional system.

Continuous-push – Real-time data consumers require a real continuous-push approach. When data is
entered in a source system, somehow it needs to be pushed live to the data consumers. In this case, data
consumers do not ask for data, it is constantly pushed to them. This is the world of streaming data and
streaming analytics. At real-time organizations can analyze business processes and react to that instantly.

Streaming Data and Data Virtualization – A new requirement for data virtualization products is to support the
continuous-push approach; see Figure 5. A data virtualization platform must be able to ‘listen’ to incoming
data streamed from certain source systems or messaging technologies. Next, it needs to be able to
process that incoming data. For example, the incoming data stream must be transformed, extended with
other data, decrypted, or integrated with another stream. Such operations on a stream should be defined
within the data virtualization platform, preferably transformed in the same way as pull data.

Figure 5 A style of data delivery in which data virtualization transforms and processes streaming data.

Next, data virtualization platforms need to be able to push the transformed data onwards to data

consumers without any form of data storage. In this case, data consumers need to be in listening mode to
be able to respond to that incoming data.

Ideally, it should be transparent to data virtualization developers whether they define
transformation rules for pulling data or for streaming data. Except that for streaming some extra
specifications may be required that are specific to streaming.

7 Requirement 5: Fast Software Development

From In-house to Outsourced Development – Now that the market has discovered data virtualization and the
interest is growing, the customer base is growing and the vendors are getting more requests for
functionality. For example, organizations may be asking for support for a GraphQL interface, for master
data management capabilities, data pseudonymization functionality, data preparation features, and
GEO/GIS support. In addition, data virtualization platforms operate in a network of other technologies,
such as database servers, packaged applications, messaging products, enterprise service busses, ETL tools,
and BI tools. These product categories are changing and evolving as well, and all this impacts data
virtualization.

All these changes mean that functionality must be improved and added to data virtualization
platforms much faster. The question is whether the development team can develop all the new features
by itself or should a different approach be applied? Can a vendor keep up with all the new software and
hardware developments or does development have to outsourced in some way?

Raising the Bar for Data Virtualization 13

Copyright © 2020 R20/Consultancy, all rights reserved.

In many other industries it has become the norm not to develop all the components themselves,
but to assemble them. Most vendors have become assemblers. For example, in the car industry,
companies such as Volkswagen do not develop their own shock absorbers and GPS systems. This is left to
specialized companies who do research and development for those specific components. Those vendors
can divide research and development costs across multiple customers. Bosch, for example, develops and
sells sensors that are used by several car manufacturers. The component manufacturers will keep on
improving their components. Evidently, the car manufacturers inform the component developers what
the required specifications are.

An Extensible Architecture – To be able to support all the new organization requirements, data virtualization
platform vendors must somehow mimic the outsourcing approach of product development. Data
virtualization vendors cannot develop everything in house. This means that that the product needs an
internal architecture that allows modules from other vendors to be incorporated.

This approach of development increases the development speed for several reasons. The group of
developers working on the data virtualization platform increases. Imagine that a data virtualization
platform needs a scheduler to simulate ETL functionality. The development group needs to be extended
with specialists in this field. They need to study the topic and determine how to add this functionality to
the main product. If the data virtualization platform would allow existing ETL modules to be embedded,
the functionality can be added much faster. Indirectly, more people will be working on the data
virtualization platform. The vendor supplying the ETL module will probably have specialists in this area
who are likely able to develop this functionality more quickly. Additionally, they can continue to improve
this module independently of the data virtualization vendor. The latter can adopt a better version when
needed. Note that these adopted components can be open source or commercial software.

8 Requirement 6: Transaction Processing

Most data virtualization platforms are deployed in read-only environments. For most current data
consumers this is sufficient. For their use cases, there is no need to insert or update data using the data
virtualization platforms. This will change with the coming of concepts, such as the microservices
architecture and data fabrics. Future data consumers need to be able to change data as well. For example,
an app used by organizations may allow them to change their own address or to place new orders.
Another example is a more BI-type environment in which users want to enter budgeting and forecasting
data themselves to be able to compare the real data coming from a data warehouse with the budget and
forecast numbers.

Data virtualization platforms need to support transaction
processing (or write-back) functionality. The added value of changing data
with a data virtualization platform is, as always, data abstraction. In this
case, developers of the applications can use SQL or a service-interface of
the data virtualization platform to insert, update, and delete data. They are
completely shielded from how data is stored, where it is stored, what technology is used for storing data,
and what the interface and language is. This speeds up development and makes it possible for
organizations to change data storage technologies or the data structures without having to change
application code.

Data virtualization
platforms need to support

transaction processing.

Raising the Bar for Data Virtualization 14

Copyright © 2020 R20/Consultancy, all rights reserved.

9 How fraXses Supports New Requirements

Introduction to fraXses – fraXses is one of the newer data virtualization platforms on the market. It was
introduced in 2015. It supports all the features expected from a data virtualization platform, such as:

 It allows for data federation of a heterogeneous set of data sources, ranging from SQL sources via
Hadoop, packaged applications, and NoSQL to simple files and spreadsheets.

 It uses SQL-99 as the key language for defining all the transformations, filters, aggregations, joins,
and cleansing operations to be applied to a data source. Most development is done through an
intuitive, non-technical interface that generates data source specific queries.

 Data security rules can be defined centrally.

 It uses virtual tables as the key building block. These are called data objects in fraXses. These
virtual tables can be accessed through different technical interfaces, including JDBC/SQL and
JSON/REST.

 Dependencies between virtual tables can be presented graphically allowing for detailed lineage
and impact analysis.

 Virtual tables can be cached to minimize access to data sources.

See also the whitepaper Unifying Data Delivery Systems Through Data Virtualization3 for a more detailed
description and general overview of fraXses.

In the summer of 2020, a new version was released with a new microservices architecture, supporting the
new data virtualization features described in this whitepaper:

 Limitless scalability

 Leverage of cloud platforms

 Functional extensibility

 Streaming data

 Fast software development

 Transaction processing

Limitless Scalability – The previous version of fraXses was already based on a microservices architecture.
The architecture of the current version has been significantly improved to support this flexible and
scalable architecture, to offer (almost) limitless scalability, and to exploit cloud platforms.

When developing microservices, engineers need to find the perfect
balance between the number of network messages between the services
and the size of the messages. Too many small services sending many inter-
service messages can decrease performance and scalability, and the same
applies to large services with a limited number of inter-service messages
(semi-monolithic). In the new version of fraXses this balance has been optimized. Functionality has been
rearranged across services and more functionality has been implemented as services. The internal
architecture of fraXses is primarily a serverless architecture.

The product uses an orchestrator to distribute the work across all the service instances. It is
responsible for starting more instances of a service when the workload demands it. It stops service

3
 R.F. van der Lans, Unifying Data Delivery Systems Through Data Virtualization, October 2018; see

https://www.r20.nl/WhitepaperFraXsesUnifiedV1.pdf

fraXses has a
microservices and

serverless architecture.

Raising the Bar for Data Virtualization 15

Copyright © 2020 R20/Consultancy, all rights reserved.

instances when the workload decreases. This mechanism allows fraXses to offer dynamic up and down
scalability. Starting and stopping services can be done manually or automatically. The entire product does
not have to be stopped for this. The orchestrator uses a round-robin and load-on-service approach to
divide the work across multiple instances of the same service.

Apache Kafka is used internally to optimize data traffic between service instances. This allows
fraXses to exploit and benefit from the performance and robustness of this messaging technology, and
also from the cloud platforms.

Another feature related to limitless scalability relates to speeding up queries on big data. Queries
that need to process massive amounts of data are pushed by fraXses for execution to Apache Spark. The
benefit is that Spark distributes query processing across available cores and memory. The effect is that
when fraXses runs on a cloud platform with an almost limitless amount of cores and memory available,
theoretically, query execution can be distributed across hundreds of cores.

Full Leverage of Cloud Platforms – With its microservices architecture, fraXses
can leverage the parallelization capabilities of cloud platforms. In such an
environment, the challenge for a product is to manage all the instances of
all the services. Instead of developing a proprietary solution, fraXses opted
for proven technology called Kubernetes. The group developing Kubernetes defines the product as
follows: “Kubernetes itself is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation. It has a large,
rapidly growing ecosystem. Kubernetes services, support, and tools are widely available.” The technology
was initially developed by Google.

FraXses also uses Docker, a container system that is available on all the popular cloud platforms
and other platforms, including bare metal servers (also so known as single-tenant servers). Being a
container system and not a virtual machine, it is much lighter and typically consumes less resources than
virtual machines.

Due to the microservices architecture, the use of technologies such as Docker and Kubernetes,
fraXses can benefit from the flexible fee structure (pay-by-the-sip) of the cloud. When the workload
decreases, service instances are automatically stopped which minimizes resource consumption. In fact, if
there is no workload at all, it is only the orchestrator and certain other services that are still operational,
but those are small services consuming little resources.

During the execution of services, fraXses logs every message and service invocation. If the
workload increases, the amount of logging can become massive. If fraXses is installed on a cloud platform,
it uses the platform’s native storage technology for logging and it uses Ceph for bare metal deployment.
Ceph is an advanced storage platform for object, block, and file-level storage. It uses software abstraction
layers to decouple the data from the physical hardware storage. It integrates well with technologies such
as Kubernetes and microservices architectures, making it fit well with the fraXses architecture.

Functional Extensibility – fraXses can be extended with services developed by customers or other parties.
The examples described in Chapter 7 can all be implemented as services to become an intrinsic part of
fraXses. Externally developed services become first-class citizens services in the fraXses microservices
architecture. Developers will not notice the difference between original fraXses services and externally
developed services.

fraXses works with so-called smart wrappers in which all services
are executed, including their own. Through those wrappers external
services inherit all the features of the fraXses microservices architecture.
For example, when a new service communicates with other services it uses
Kafka, but note that service developers do not need to know, this is all

fraXses uses internally
Kubernetes and Docker.

Smart wrappers are used
to embed external

modules.

Raising the Bar for Data Virtualization 16

Copyright © 2020 R20/Consultancy, all rights reserved.

hidden from them. In fact, if it is ever decided to change the messaging technology fraXses uses,
developers do not have to change one line of code of the service, they can be embedded without
adjustments. This is all hidden by the smart wrapper. The orchestrator manages these services as well and
they can also dynamically scale up and down. Another feature that all the services inherit is, for example,
that messages sent are also automatically encrypted and logged. But again, if it is decided to replace the
current storage technology by another storage, it has no impact on the services.

The smart wrapper technology allows developers to write the services in their preferred language.
Java, Python, Scala, and Rust can all be used.

Streaming Data – For streaming data applications, fraXses supports specific services. These services exploit
the Apache Kafka messaging technology. Messages from source systems can be pushed into fraXses,
fraXses can then process the messages and then push them onwards to an application that listens to
incoming messages. Such an application can also use another messaging technology or an enterprise
service bus. How the data is processed is defined with views.

Fast Software Development – To speed up software development, fraXses uses several open source software
modules. The product exploits them fully and when improved versions are released, fraXses automatically
exploits the new capabilities. Additionally, as indicated, the microservices architecture is flexible enough
to allow external parties and customers to develop modules that are embedded in fraXses and operate as
first-class citizens.

Transaction Processing – fraXses supports transaction processing. Updates, inserts, and deletes can be
executed on the views resulting in changes made to the underlying source systems. Developers are
completely shielded from the interfaces and SQL languages supported by the source systems. Source
systems do not have to be SQL-databases, but can be NoSQL systems as well. Heterogeneous transaction
processing is not supported yet.

Development and Deployment – Features not described in this whitepaper pertain to development by
developers and product deployment.

The development of the data virtualization environment has been simplified in several ways in the
new version of fraXses. First of all, the development environment in which views are developed can be
classified as a low-code environment which improves productivity and maintenance. Most specifications
can be defined without writing code.

The smart wrappers have simplified the development of services. They allow developers to
concentrate on the core functionality of the services and not on more technical aspects. The smart
wrappers, in which services operate, together with the orchestrator take care of all aspects related to
operating within the larger architecture.

Deploying the environment itself has become easier because of the use of popular technologies
such as Kubernetes, Docker, and Harbor, with which many organizations have experience. Kubernetes
provides management, up and down scaling, upgrades, and rollback features. Docker containers allow
images to be built, along with packaged code, that can be run in any environment that has Docker
installed. This makes porting increasingly simple, but also for running multiple fraXses servers for different
purposes, such as OTAP. In all these environments, the code running in the containers has a consistent
execution environment in which to run. Harbor is a container image registry providing role-based access
control, image vulnerability scanning and trusted image signing to all fraXses images. The three together,
make deployment easy. In other words, the product does not introduce a new deployment style to those
within the organization who are responsible for deployment.

Raising the Bar for Data Virtualization 17

Copyright © 2020 R20/Consultancy, all rights reserved.

10 Closing Remarks

The bar has clearly been raised for data virtualization, because organizations keep demanding more. The
functionality, performance, and scalability must be improved. With a revamp of their internal
architecture, fraXses did raise the bar for itself. Its microservices architecture fits perfectly with the
technology of cloud platforms. fraXses does not run ‘on’ the cloud, it runs ‘within’ the cloud. It can fully
utilize cloud platforms, resulting in almost limitless scalability. The use of popular technologies on cloud
platforms, such as Kafka, Docker, and Kubernetes, makes it even more suitable for the cloud. Additionally,
the microservices architecture and the smart wrappers allow customers and other parties to easily extend
the existing functionality.

Raising the Bar for Data Virtualization 18

Copyright © 2020 R20/Consultancy, all rights reserved.

About the Author

Rick van der Lans is a highly-respected independent analyst, consultant, author, and internationally
acclaimed lecturer specializing in data architecture, data warehousing, business intelligence, big data,
database technology, and data virtualization. He works for R20/Consultancy (www.r20.nl), which he
founded in 1987. In 2018, he was selected the sixth most influential BI analyst worldwide by
onalytica.com4.

He has presented countless seminars, webinars, and keynotes at industry-leading conferences.
For many years, he has served as the chairman of the annual European Enterprise Data and Business
Intelligence Conference in London and the annual Data Warehousing and Business Intelligence Summit.

Rick helps clients worldwide to design their data warehouse, big data, and business intelligence
architectures and solutions and assists them with selecting the right products. He has been influential in
introducing the new logical data warehouse architecture worldwide which helps organizations to develop
more agile business intelligence systems. He introduced the business intelligence architecture called the
Data Delivery Platform in 2009 in a number of articles5 all published at B-eye-Network.com.

He is the author of several books on computing, including his new Data Virtualization: Selected
Writings6 and Data Virtualization for Business Intelligence Systems7. Some of these books are available in
different languages. Books such as the popular Introduction to SQL is available in English, Dutch, Italian,
Chinese, and German and is sold worldwide. Over the years, he has authored hundreds of articles and
blogs for newspapers and websites and has authored many educational and popular white papers for a
long list of vendors. He was the author of the first available book on SQL8, entitled Introduction to SQL,
which has been translated into several languages with more than 100,000 copies sold.

For more information please visit www.r20.nl, or send an email to rick@r20.nl. You can also get in
touch with him via LinkedIn and Twitter (@Rick_vanderlans).

Ambassador of Axians Business Analytics Laren: This consultancy company specializes in business
intelligence, data management, big data, data warehousing, data virtualization, and analytics. In this part-
time role, Rick works closely together with the consultants in many projects. Their joint experiences and
insights are shared in seminars, webinars, blogs, and whitepapers.

4
 Onalytica.com, Business Intelligence – Top Influencers, Brands and Publications, June 2018; see

http://www.onalytica.com/blog/posts/business-intelligence-top-influencers-brands-publications/
5
 See http://www.b-eye-network.com/channels/5087/view/12495

6
 R.F. van der Lans, Data Virtualization: Selected Writings, Lulu.com, September 2019; see

http://www.r20.nl/DataVirtualizationBook.htm
7
 R.F. van der Lans, Data Virtualization for Business Intelligence Systems, Morgan Kaufmann Publishers, 2012; see

https://www.r20.nl/DataVirtualization_V1.htm
8
 R.F. van der Lans, Introduction to SQL; Mastering the Relational Database Language, fourth edition, Addison-Wesley, 2007.

Raising the Bar for Data Virtualization 19

Copyright © 2020 R20/Consultancy, all rights reserved.

About Intenda

Intenda, founded in 2001, is a software company providing the unique fraXses platform to the global
market. Intenda clients are ensured that they will be aligned with the latest technology trends in the
market.
Their purpose is to provide business applications and technology that makes a difference to the world,
using innovative thinking and tailor-made solutions that allow their clients to drive their businesses
forward.
They see data inside out, and they are all about data. Data drives business, that is what Intenda
specializes in.
With offices located in Africa, Europe, the United Kingdom and the USA, they have the capacity to service
businesses on a broad scale across industry sectors and locations. For more information, visit
www.intenda.tech or email info@intenda.tech.

About fraXses

fraXses was created to address the fast-moving issues business are facing with the ever-increasing data
volumes, variety, the complexity of data sources and advances in technology that have required a
different approach to data and transactional systems.
Using a discover, configure, and deliver methodology, the fraXses platform enhances data access and
reduces the need for development with a low/no-code approach. This framework empowers the
business to gain much greater value from their data.
fraXses provides an end-to-end solution for data virtualization and federation across multiple
sources, technologies and locations as well as providing a data lake, IoT and data pipelining. The platform
is built on a microservices architecture, which allows endless scalability options.

