
An Introduction
to Kubernetes
Multi-tenancy

By Sam Briesemeister
Senior Engineering Manager, D2iQ

W H I T E P A P E R

With Contributions by:

Kirk Marty Director, Global Sales Engineering, D2iQ

Dan Mennell Principal Sales Engineer, D2iQ

Shafique Hassan Senior Director, Customer Success, D2iQ

An Introduction to Kubernetes Multi-tenancy 2

Executive Summary
In a multi-tenant Kubernetes architecture, multiple applications, services, workloads, users,

or teams share a cluster’s resources. This paper will examine the use of Kubernetes multi-

tenancy, including:

• Why and when your organization should consider using a multi-tenant

Kubernetes architecture

• Issues and challenges that multi-tenancy can raise, including “noisy neighbors”

and “nosy neighbors”

• Multi-tenant resource management and the use of quotas

• Soft and hard multi-tenancy: what they mean and how and when to use them

• Additional considerations for service providers

• When and how to use a multi-cluster strategy

This paper will show that a well-developed multi-tenant strategy can drive more efficient use

of infrastructure and personnel, improving ROI while still providing users with the levels of

application performance, reliability, and security they require. It will also provide guidelines

and best practices for implementing a successful multi-tenant strategy, maximizing

efficiency and effectiveness while minimizing risk.

Why Multi-tenancy?
Economics and efficiency of scale influence technology decisions at enterprises.

Multi-tenancy capabilities in platforms aim to drive efficient use of infrastructure
while providing operators with robust isolation mechanisms between users, workloads
or teams. Kubernetes allows for operators to build multi-tenant platforms leveraging

a wide range of built-in capabilities that address isolation and efficiency design goals.

Native Kubernetes capabilities can thus be used to achieve the end goals of increased

efficiency and reduced risk in a multi-tenant platform. Below, we will examine the

benefits of multi-tenancy, as well as some of the issues multi-tenancy can create for

operators or users and how Kubernetes can be used to address them.

An Introduction to Kubernetes Multi-tenancy 3

Costs associated with a platform can be categorized into: 1) infrastructure spend through private

data centers or a cloud provider and 2) on-going operational costs for management and maintenance.

With increased Kubernetes adoption, enterprises often experience “cluster sprawl”—a rapidly

growing number of usually single tenant clusters lacking centralized governance. Cluster sprawl

exacerbates management complexity, increases operational overhead and introduces additional

costs not accounted for in the initial plan. A careful application of a multi-tenant strategy is a major

remedy for the problems created by cluster sprawl.

Multi-tenancy in Kubernetes improves ROI by simultaneously increasing the cumulative value and

reducing operating costs. Running more applications on the same shared infrastructure means

better utilization of resources and a reduction in overall operating costs. Larger, shared clusters

reduce infrastructure overhead by consolidating the control plane and often reduce network costs.

Management is simplified by applying a consistent configuration strategy and applications can be

made more resilient to infrastructure failures, resulting in fewer application outages over time. In

other words, a correct multi-tenant strategy enables you to extract more use from existing IT assets

while simultaneously reducing operating costs. This raises return while reducing investment to

improve ROI from both sides of the equation.

Kubernetes achieves multi-tenancy by facilitating software-layer isolation on shared infrastructure.

This comes with some trade-offs, but Kubernetes’ capabilities meet many organizational needs.

Organizing teams and adopting a culture that aligns with business goals is key to driving success

without incurring runaway costs. Common organizational models include:

• Autonomous teams operate dedicated clusters and ship microservices on independent release

cycles. When a team delivers multiple microservices on the same cluster, they should operate with

application isolation.

• Enterprise operations teams deliver clusters to many teams in a platform as a service model to

optimize operational efficiency. An individual cluster may be shared across many teams with

similar security requirements.

• Globally distributed applications run on multiple clusters in different regions and multiple teams

develop the service deployed in each region.

• Service providers deliver application services (e.g. SaaS) to multiple, unrelated customers,

operating in the same cluster.

The next sections of this paper will describe the core concepts, configurations, contingencies,

and considerations needed to support multi-tenant clusters and to meet these varying

isolation requirements.

https://www.devopsdigest.com/3-ways-cluster-sprawl-is-hurting-your-business

An Introduction to Kubernetes Multi-tenancy 4

Key Multi-tenancy Issues and
the Core Kubernetes Capabilities
That Address Them
Two inherent problems that multi-tenancy constructs must seek to mitigate are the “noisy

neighbor” and “nosy neighbor” problems. The “noisy neighbor” challenge addresses the problem of

a tenant negatively impacting (or monopolizing) the capacity or performance of other tenants or the

platform through hungry or greedy workloads. On the other hand, the “nosy neighbor” predicament

refers to risks associated with access control and privacy of workloads in shared environments.

“Noisy neighbors’’ have a severe impact on the performance of other workloads on the same

cluster, sometimes preventing them from running altogether. “Nosy neighbors” represent a security

risk, either through inadverdent sharing of data or resources or through malign action.

The following list describes multi-tenancy capabilities available in Kubernetes to address these

and other issues, along with some common deployment patterns leveraging these capabilities.

• Namespaces:

The central element of isolation in Kubernetes is a Namespace. Typically, every tenant on your

platform needs a single, dedicated namespace. The concept of the namespace is foundational

to addressing either noisy neighbor or nosy neighbor issues. Tenants are usually applications

or microservices—this granular approach offers the most powerful security and resource

management capabilities—but teams can be treated as tenants in some situations (as in a SaaS

model). Applications deployed in a namespace can leverage the powerful security and resource

management constructs that Kubernetes offers to build a multi-tenant platform.

• Roles and RoleBindings:

Within a namespace, correct configuration of Role-based Access Control (RBAC) is critical for

security isolation and explicit-approval authorization. Operational access to each namespace is

managed through Roles and RoleBindings. Roles align with operational responsibilities, which

determine which actions (called verbs in Kubernetes) can be taken on various resources by

their type. RoleBindings associates users and groups to each Role. When a single team governs

multiple applications (i.e. namespaces), that team‘s group should be listed as a subject in

the RoleBindings for the appropriate namespaces. Similarly, if multiple teams contribute to

an application, it‘s recommended to represent those as groups in your identity management

system, and configure your RoleBindings‘s subjects to grant those teams (as groups) access to

the namespace for that application.

An Introduction to Kubernetes Multi-tenancy 5

• ResourceQuota:

The “noisy neighbor” problem can be mitigated by leveraging a ResourceQuota that can

be defined on each namespace, with fixed CPU and Memory allocation. When needed, this

quota can be revised to expand or reduce the resources available to each application, thus

ensuring that one application cannot consume so much of a cluster’s compute or storage

capacity that it affects its “neighbor” applications. We will discuss resource management

in greater detail in a dedicated section, below.

• NetworkPolicy:

Applications, or more specifically pods, are reachable by default, by all other pods in the

cluster. Applications in Kubernetes can expose their services using Services. These become

discoverable via DNS within the cluster. This is extremely helpful for interconnecting application

components, but requires some security considerations in multi-tenant environments.

Specifically, it is necessary to isolate tenant environments at the network layer, by default, but

allow certain services to be accessible across namespaces. To facilitate this need, Kubernetes

provides NetworkPolicy, which behaves like an intra-cluster firewall that works with Kubernetes

concepts of Namespaces and Pods. Each NetworkPolicy defines ingress and egress rules

for communication between pods, across namespaces. Policies can be defined that control

cross-namespace network access, as well as intra-namespace access. For example, you can

use NetworkPolicy to restrict database pods to specific API services in the same namespace,

and force clients to interact with your web API in a microservice architecture. Building on this

concept, a best practice to isolate each tenant and address the “nosy neighbor” issue, is to apply

a default Network Policy to all tenant namespaces, which blocks access from other namespaces.

When needed, the policy can be revised to open specific application ports within the cluster to

other pods in other namespaces.

Resource Management and Quotas:
Preventing Noisy Neighbors
As multi-tenant clusters share finite resources among all tenants and across a fixed number

of nodes, administrators must ensure that tenants do not use more than their fair share of

resources. Kubernetes offers ResourceQuotas to enforce fair utilization of shared resources.

Each namespace can be allowed to claim a specific amount of CPU or Memory capacity and to

be constrained on numerous other resources. Every tenant namespace should be created with a

default ResourceQuota, which can be revised by administrators to accommodate each application‘s

resource demands as it evolves.

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/

An Introduction to Kubernetes Multi-tenancy 6

The most common quotas will focus on CPU and Memory allocation, as these are typically the most

precious of the cluster’s resources. However, additional constraints on other cluster resources

may be useful. For example, a quota can be defined to limit the number of pods in the namespace,

which will indirectly also limit the number of IPs allocated to pods in each namespace’s application.

Similarly, Services exposed, either by LoadBalancer or ClusterIP, can also be constrained. This type

of quota allows each tenant namespace to operate within a resource consumption budget, which

indirectly contributes to controlling the operating cost of the cluster.

Each application pod should define requests for CPU and memory, and these will be strictly

honored by the scheduler. If an application‘s requests cannot be fulfilled, it will fail to deploy;

requests are a hard commitment. Requests for all the pods in a namespace, in sum, cannot exceed

the total value of the quota’s request maximum.

Applications pods should also define limits, the upper bound of the pod’s resource usage. When an

application exceeds its memory limits, Kubernetes will restart it. When the cluster is scheduling a

workload, limits are treated as a soft commitment, and may cumulatively exceed the total capacity

of the cluster. This can allow a cluster’s resources to be overcommitted, which allows applications

to burst their usage when needed.

Cluster administrators should define a default LimitRange for every namespace. This action

will impose a default set of requests and limits on each pod, establish minimum and maximum

resource allocations, and constrain the allowed ratio of limits and ranges. Applications will then be

required to fit their resource consumption with this policy. The LimitRange policy can be adjusted

on a per-namespace basis later, to accommodate specific application requirements.

Consider also using the vertical pod autoscaler (VPA) to manage CPU and memory allocation based

on application metrics. The VPA automatically updates resources and limits, while also staying

within the bounds of any namespace quota assigned. However, some caution is required as the VPA

may also conflict with LimitRange if not correctly configured.

Be sure to keep in mind that CPU is “compressible” but that memory is not. Essentially, this

means that time-sharing can allow overcommitment of CPU resources, but memory is finite, and

workloads occupy it to the exclusion of others.

Most applications exhibit “bursty” consumption of their resources, both CPU and memory,

“bursting” at different times. This consumption pattern allows a finite resource like memory to be

reallocated over time. Therefore, it is usually safe to overcommit clusters, but the advisability of

this practice depends heavily on the specific workloads and how they operate.

Note: Some applications claim a large block of resources, particularly memory, and rarely release it. Many Java

applications behave this way due to their underlying virtual machine functionality. In these cases, it’s often best

to configure limits equal to requests, to ensure that the needed resources are available and that the cluster will

not attempt to overcommit the resources allocated to this application.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/limit-range/

An Introduction to Kubernetes Multi-tenancy 7

Tuning Quality of Service for Workloads
Kubernetes is designed to be resilient to inevitable infrastructure failures, but to preserve

applications, it sometimes has to relocate them to new machines. For this process to maintain

application service levels, Kubernetes needs to understand the priority of workload components

in order to balance application availability in resource-constrained scenarios. This allows

Kubernetes to maintain the performance of key business applications, and deprioritize less

critical workloads, when needed.

For best results:

• Define a robust set of PriorityClasses for applications to use, both for tenants and

administrators. These are global and must be managed by cluster administrators. An example

model is provided below.

• Take advantage of the quality of service model in Kubernetes, assigning appropriate

requests and limits for each workload. Understand how this impacts pod eviction when

resources are constrained.

• All applications must define a PodDisruptionBudget for critical components.

• All workloads must define pod priority for critical components.

• The use of inter-pod affinity should be minimized, and applied only as a performance

optimization, or when critical applications’ performance requires components to be running on

the same machines.

• Enforce quotas on priority classes to ensure fair prioritization of application components.

With a strategy modeled on these principles, Kubernetes will make better-informed

decisions about workload orchestration, during regular operations, as well as in failure

modes that constrain available capacity.

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/#evicting-end-user-pods
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/policy/resource-quotas/#limit-priority-class-consumption-by-default

An Introduction to Kubernetes Multi-tenancy 8

Baseline Pod Priority Model
This model is intended to be foundational. It should fit many use-cases, while still

providing a lot of room for customization, and creation of intermediate classes.

Note: Kubernetes provides two built-in priority classes: system-cluster-critical and system-node-

critical. These provide a much higher priority value, and should not be used by tenant workloads.

Providing a model like this to your tenants enables a self-service approach to workload

classification, and allows them to independently govern the resilience of their workloads.

Priority Class Name Purpose (example) Value/Priority

Cluster Core Essential services to operate the cluster

itself, such as Dex for authentication

100000

Tenant Critical Services which are business-critical to your

tenant, and cannot easily move to a new

machine, such as database back-ends

70000

Administrative

Services

Dashboards that are important for managing

the cluster, but could tolerate a short outage

while moving to a new machine

50000

Tenant Stateless Services which a tenant can temporarily

lose in the event of infrastructure failure,

but respond well to scaling events, such as

stateless front-end APIs.

10000

Tenant Batch Background Jobs of the tenants application,

which could safely terminate and restart but

are somewhat costly to reproduce

2000

Best Effort (default) No priority assigned; allows termination in

favor of higher priority workloads

100

An Introduction to Kubernetes Multi-tenancy 9

Preventing Nosy Neighbors:
Securing Soft Multi-tenancy
In addition to the practices and mechanisms outlined above, some security precautions are

warranted, if only to mitigate the risks of unknown vectors in your applications. This is where the

concept of soft multi-tenancy comes into play. Soft multi-tenancy does not incorporate strict

isolation of your applications, workloads, and users. This methodology is based on the trust of

your users and to help reduce accidental access to your tenants.

• Ensure that Kubernetes EncryptionConfig is configured to encrypt secrets at rest (in etcd).

• Disable the use of HostPath volume mounts. When pods can mount from the host, this creates

an injection vector across workloads, which can also span across multiple tenants sharing the

same machine.

• Consider using PodSecurityPolicy to constrain pods’ kernel-level security options, particularly

disabling privileged pods. This can also be achieved using Gatekeeper policies.

• Consider using gvisor to limit the kernel APIs that containers can leverage; this reduces the

attack service for malicious workloads attempting to “breach the container” and take control of

the host operating system.

• Consider disabling the use of PersistentVolumeClaims (and PVs) in tenant namespaces.

 • Provide a centrally managed object-storage solution in the cluster, such as Minio, with a

distributed storage back-end external to the cluster.

 • Require applications to use the centrally managed object storage, with

end-user authentication.

 • Selectively allow Persistent Volume usage for specific applications (e.g. databases).

• Encourage the use of Ingress instead of exposing Services. This allows tenants’ web

applications to leverage a central routing proxy, implemented by an Ingress Controller, simplifies

TLS certificate management, and reduces costs associated with load-balancer infrastructure.

• Use Secrets in tenant namespaces to share access to an external secrets store such as

Hashicorp Vault; this allows control of the secrets to be removed from Kubernetes, and properly

configured applications to retrieve them at runtime, and each tenant can be granted specialized

access within Vault.

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/blog/2019/08/06/opa-gatekeeper-policy-and-governance-for-kubernetes/
https://github.com/google/gvisor
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

An Introduction to Kubernetes Multi-tenancy 10

Additional Considerations for Hardened
Multi-tenancy: Keeping Out Burglars
The practices and mitigations described until now fit with various models of soft multi-tenancy,

predominantly focused on preventing accidental access to unintended resources.

Hard multitenancy aims to accommodate multiple tenants with unrelated business objectives,

possibly adversarial, and potentially seeking to exploit vulnerabilities with malicious intent in the

system to gain access across tenant boundaries.

All of the precautions described above should be applied in a hard multi-tenancy model. Some

variations should be considered.

• Disable the use of NodePort and HostPort Services, as these expose applications on

discoverable ports in the host network, and may bypass NetworkPolicy controls in some

network environments. Require all tenants to expose Services using type ClusterIP (internally) or

LoadBalancer (externally).

• Prevent tenants from altering their ResourceQuotas and LimitRanges, in the Tenant Administrator

role; a malicious tenant may deploy workloads specially designed to consume gratuitous cluster

capacity, in an attempt to deprive other tenants‘ workloads of their resources.

• If tenants require isolated machines, consider splitting the cluster into node pools per tenant,

with labeled nodes, and use the PodNodeSelector feature to confine each tenant namespace to

those specific nodes by label. This can be used in combination with taints and tolerations.

• Use the NodeRestriction feature to prevent nodes from altering certain labels and taints,

specifically for the purpose of workload isolation.

• If you are operating bare-metal clusters, consider slicing machine capacity using virtual machines

for each node, to isolate each tenant to a VM, while sharing hardware. This reduces the risk of a

compromised host, because each Kubernetes node (VM) will have its own kernel instance.

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#podnodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#noderestriction

An Introduction to Kubernetes Multi-tenancy 11

Kubernetes Behind the Scenes
for Service Providers
In many service provider contexts, tenants do not need direct access to the Kubernetes API, but

should instead interact with other application APIs. These application APIs would be responsible

for managing the lifecycle of tenants’ isolated application instances.

This model would be appropriate if you:

• Host a common set of applications with different instances for each tenant, such as a blog

platform, and tenants interact only with the application instance.

• Provide higher-level APIs that accept a tenant’s workload parameters (e.g. as a PaaS), but

leverage Kubernetes “behind the scenes”.

In these cases, it’s critical that your application layer should automate all of the preceding

recommendations to ensure isolation of the tenant applications, particularly for NetworkPolicy,

ResourceQuota, and LimitRange.

Because such tenants do not have direct access to Kubernetes, a few more flexible alternatives can

be considered. Note these could be potentially bypassed by a malicious user with specially crafted

pod deployments if they gain direct access to the Kubernetes API. Further, these configurations

require a suitable cluster topology that provides nodes dedicated to each tenant, which may

compromise the goal of infrastructure cost reduction.

• Using pod anti-affinity to avoid scheduling pods on machines that also serve another tenant’s

application instance.

• Using node taints and pod tolerations to identify specific nodes for a tenant workload.

Managing Multiple Clusters
Some workloads are so sensitive that sharing either infrastructure or administrative APIs is

not acceptable. In these cases, as strict isolation is truly critical, it may still be advisable to

operate separate clusters. This allows strict separation of the physical hardware, networks

and network overlays, virtual machines (if applicable), and management APIs.

Until recently, it has been very common for organizations to delegate entire clusters to

specific teams, resulting in the cluster sprawl mentioned previously. This practice has

the benefit of controlling the blast radius in the event of a cluster-wide failure, practically

turning each cluster into its own failure domain.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

An Introduction to Kubernetes Multi-tenancy 12

The trade-off: for more isolated risk profiles, you take on the increased overhead cost, and more

complex management burden. A good multi-cluster strategy is critical.

In a multi-cluster strategy, we move from a world of single multi-tenant clusters to an

ecosystem of multiple single-or multi-tenant clusters. In addition to all of the best practices

stated above, some new governance and compliance challenges need to be addressed.

• Identity and access management must be consistent across all clusters to simplify security

controls. Identity providers, such as an enterprise LDAP service, should be used on all

clusters with Kubernetes native OIDC configuration or an authenticating proxy. RoleBindings

should refer to subject groups (not individual users) so that authorization, by way of group

membership, can be governed within the central IDP.

• RBAC (access control) should be audited regularly across all clusters to ensure that the

correct privileges are granted to all staff.

• Component audits of all clusters should be executed frequently to alert on critical

vulnerabilities to help mitigate risk.

• Workloads on all clusters should be audited for compliance with enterprise policy to ensure

that all components are running with appropriate security patches and configuration

requirements. (For example, to ensure that all databases are reachable only via TLS/SSL

sockets, and sensitive data is stored on encrypted volumes.)

• When services are exposed for inter-cluster communication, TLS certificate management

becomes a critical function. These should be audited regularly and renewal should be

automated. Kubernetes’ native certificate management provides a strong foundation, but

additional tools are needed for auditing, reporting, and lifecycle automation.

• Metrics and logging services should be federated and their data archived in long-term

storage. This data should reside outside each cluster, such as in a central S3 bucket, and

a central dashboard should raise alarms from any cluster showing signs of degraded

performance or malfunction.

Note: These considerations are just the beginning. As Kubernetes evolves and new functionality

is established, new auditing capabilities will be needed.

An Introduction to Kubernetes Multi-tenancy 13

It is critical in a multi-cluster strategy to consider risk domains from a business perspective. This

includes regulatory environments, compliance objectives, and other business requirements that

vary according to workload. In many organizations, these requirements justify organizing clusters

according to each risk domain so that workloads can be deployed with automated controls that

enforce that appropriate policy.

For example, it may be beneficial to have several clusters arranged like so:

• A cluster in the EU for processing financial data for EU customers

• A cluster in the EU for serving customer-facing applications

• A cluster in the US for processing internal business applications

• A cluster in the US for processing financial data for US customers

Each of these clusters represents a different risk domain (such as data sovereignty), and automatic

enforcement of the required configuration for each workload can be applied at the cluster level.

Then, applications can rely on the cluster infrastructure to provide these capabilities, rather than

each application itself having to reinvent such enforcement independently.

These challenges are solvable with the help of open source or commercially-available multi-cluster

management tools.

Monitoring your Kubernetes API
The control plane becomes even more important as you bring on more tenants, because it becomes

the single point of failure for a cluster. Thus the Kubernetes API is a critical service for you and

your teams: it provides the interface for administrators and tenant teams, and the associated

automation needed to manage the lifecycle of both the cluster and resident workloads. When this

API service is degraded, everyone feels the pain. Keeping the Kubernetes API responsive is a critical

part of an effective multi-tenant strategy for offering clusters as a service to your organization.

A Kubernetes cluster with a single control plane is not considered production grade. A production

Kubernetes cluster MUST have at least 3 control planes.

• Even with a three-node control plane, any failure will make the cluster inoperable. Technically, it

enters a “read-only” state which prevents it from handling application recovery if other cluster

nodes fail at the same time. Mission Critical control planes should generally have 5 nodes, as this

provides an effective minimization of operational risk. Exceeding 5 control plane nodes offers very

little benefit, in practice.

An Introduction to Kubernetes Multi-tenancy 14

• A resilient control plane (3-5 nodes) allows for cluster maintenance (scheduled or

unscheduled) without producing an outage. This allows for patching of vulnerabilities,

or updating of critical cluster components with little to no impact to the teams using, or

workloads running on associated clusters.

Early in the Kubernetes project, the developers outlined two critical metrics for cluster

performance that constitute a good preliminary SLO:

• p95 API Response time less than 1 second indicates that the control plane itself is operating

in reasonably healthy conditions.

• p95 Pod start duration less than 5 seconds for pods that do not require an image pull

(i.e. precached). This indicates that many cluster components are working correctly,

particularly inter-component orchestration, and that sufficient capacity is available to

maintain current workloads.

As clusters grow with more machines and their associated workload, each machine imposes

load on the API. If API response time degrades, it may be appropriate to scale the control plane

with higher-capacity machines (Vertical Scaling). Some applications integrate directly with

the Kubernetes API, and if poorly written, may put heavy load on the API components of the

cluster—having the same effect as a Denial of Service attack. In this case, all teams may be

affected by a reduction in performance, and application recovery in the event of infrastructure

failure would also be compromised.

An effective monitoring system should provide insight into both the availability of Control Plane

Nodes and the performance of API calls, as well as configuration change tracking:

• To begin with, it should alert you whenever any control-plane node is

unresponsive (availability).

• Cluster operators should include API metrics in their regular operations dashboards,

in addition to the conventional infrastructure health metrics.

• In multi-tenant environments, it becomes especially critical to enable and use Kubernetes’

audit logging capabilities; every request, change, and query to the Kubernetes API gets

logged, and individual users’ actions within Kubernetes can be monitored.

Prometheus is a CNCF Time Series Data Store that can be used to gather and aggregate

performance and availability metrics as forwarding alerts based on mythic thresholds.

Grafana is a popular package used to create dashboards and monitoring views of the data

stored in Prometheus.

https://kubernetes.io/blog/2015/09/kubernetes-performance-measurements-and/

An Introduction to Kubernetes Multi-tenancy 15

Conclusion
Whether you’re new to Kubernetes and looking for an enterprise solution or your organization has

prolific adoption of Kubernetes in many clusters, a multi-tenancy strategy can offer significant

benefits in the right circumstances. These benefits include improved returns on IT investments

(including both capital and operating costs), the ability to offer infrastructure as a service (IaaS) to

internal teams, and improved IT infrastructure performance and service levels.

Kubernetes’ native capabilities provide a robust soft multi-tenancy solution, and in combination

with production-focused Kubernetes management tools such as D2iQ’s Kommander, can be

hardened to deliver strong isolation that fits the needs of enterprises and service providers.

Strong configuration management and resource management tools and practices can lead to

drastically improved cluster ROI, by employing a multi-tenancy model that maximizes application

density while recovering quickly from infrastructure failures. By adopting and adapting the

practices outlined here, you’ll reduce maintenance and operational costs, and your application

teams will enjoy a more reliable and resilient platform.

In multi-tenant environments, cluster operations discipline becomes critical to preserving the

value of the applications. The practices outlined here will greatly improve your tenant experience,

with more reliable clusters and stable application environments.

d2iq.com

For more information on how
we can help, please visit:

https://d2iq.com

