
POLYSCRIPTING

JANUARY 2020WHITE PAPER

Applying Moving Target Defense cybersecurity tactics to
programming languages.

TABLE OF CONTENTS

INTRODUCTION: MOVING TARGET DEFENSE

CODE INJECTION ATTACKS

POLYSCRIPTING - AN INTRODUCTION

STANDARD WORKFLOW

POLYSCRIPTING WORKFLOW

LANGUAGE SCRAMBLING

SCRAMBLED LEX FILE

TRANSFORMING SOURCE CODE

INSTRUCTIONS AND SCRAMBLING

PHP AS PROOF OF CONCEPT

POLYSCRIPTED WORDPRESS

CONCLUSION

LINKS & RESOURCES

Author: Blue Gaston, Software Engineer

Bellevue, WA

3

4

5

6

6

7

8

9

10

10

11

11

12

2POLYVERSE.COM

WHITE PAPER POLYSCRIPTING

When it comes to programming, it is important to accept an
essential fundamental truth: every piece of software is hackable.
Ultimately, this means everyone is vulnerable. Given enough time
and resources, a vulnerability can always be found, and an exploit
can be crafted. What makes this attractive to a malicious actor is
that a crafted attack can be applied across a wide surface area.
With any given vulnerability, a hacker is able to execute an exploit
across a range of machines that meet the criteria defined by a
presupposed, assumed, and known attack vector. The effort-to-re-
ward ratio is in their favor.

Exploits are cheap and widely available. While it is incredibly ex-
pensive to craft an exploit for every vulnerability, they can be built
once and sold many times over because of the homogeneity of
programs. Everyone runs the same programs, operating systems,
machines, languages and databases. This includes those concoct-
ing attacks. This sort of identical access provides an advantageous
roadmap to build malicious exploits, to find vulnerabilities and to
carefully craft attacks that can be used at a large scale. It presents
difficult problems and powerful opportunities within the security
space.

Moving Target Defense (MTD) offers a solution that draws its
inspiration from nature.

Genetic diversity is both a key to, and a result of the survival
and evolution of organisms. All members of a population do not
share the exact genetic makeup. If every human was a clone, the
first deadly disease that came along would affect each individual
the same way, essentially wiping out the human race. Think of a
disease like a malicious hack. It needs to propagate and interact
with the host’s defenses in a certain manner in order to effectively
spread. If every human was genetically identical, a disease able to
successfully infect one person could similarly infect other humans
with the same deadly consequence. Yet, this is not the case with
organisms. A disease that is deadly to one individual, may not ail
another with so much as a fever because of the diversity in their
genetic makeup. The key here is that everyone possesses unique
DNA, which is a key component to a species’ survival.

What if computer programs shared this quality of having their
own unique genetic makeup? This is the concept that MTD applies
to cybersecurity. MTD is predicated on introducing unique com-
ponents between machines, programs, binaries, and languages,
thus limiting exploitation to when its makeup exactly matches the

expected attack vector. As with infections, many attack vectors rely
on being able to access certain anchor points or data. MTD aims to
rearrange these anchor points so that an exploit is unable to ad-
just to nor account for the change, causing an attack to ultimately
fail.

MTD is the practical application of nature’s genetic diversity to
technology. It creates a program that while identical in function,
is entirely unique from any previous version of the program. For
example, Polyverse’s polymorphic version of Linux® is one such
MTD solution. It relies on custom compilers to generate unique
binaries that allow for the constant rearrangement of the afore-
mentioned anchor points. By ‘scrambling’ these anchor points,
the protected software programs and systems effectively become
immune to all but the most targeted of memory exploits. Simply
put, a malicious actor must choose to directly target your machine
or server knowing that it is different from any with which they
may have previously interacted. In the case of systems running
polymorphic versions of Linux and adhering to a strategy of MTD,
knowing that the attack vector, even if successfully enumerated,
will not stay the same for long is an invaluable asset. In other
words, the application’s memory landscape is a constantly shifting
moving target, making exploitation significantly more difficult,
resource intensive, and time consuming.

The tactics the polymorphic versions of Linux applies to compilers,
a concept dubbed “Polyscripting” is now applying to language in-
terpreters. Interpreted languages in web applications are ubiqui-
tous and are used for critical tasks, such as information storage
and retrieval, as well as providing seamless interactivity via an
application’s UI. These languages include PHP, JavaScript and
SQL and provide commonplace, easily identifiable, and exploitable
areas of publicly distributed web applications. One such exploita-
tion is code injection attacks.

Introduction: Moving Target Defense

With any given vulnerability, a hacker is able to
execute an exploit across a range of machines
that meet the criteria defined by a presupposed,
assumed, and known attack vector. The effort-to-
reward ratio is in their favor.

3POLYVERSE.COM

WHITE PAPER POLYSCRIPTING

It is easy to point fingers when it comes to security breaches.
Whether it’s deprecated legacy code, a zero-day vulnerability,
or a forgotten patch, people make mistakes and things happen.
These breaches continue to happen, even as the industry focuses
on budding new technologies like artificial intelligence, quantum
computing, and blockchains in order to stay secure. SQL injection
continues, and WordPress vulnerabilities that allow code injection
are being taken advantage of. Data is consistently corrupted and
stolen and ransomware is a constant plague on both the private
and public sectors.

Code injection is an incredibly powerful tool that hackers em-
ploy to accomplish their goals. It is an attack vector allowing
a malicious actor to run their own code on a server or website
belonging to a separate entity. Often, it is used as a backdoor to
access information or to change and to corrupt data. Some of the
most devastating breaches in history have relied on simple code
injection. For example, the Equifax breach relied on code that was
injected through an unprotected deserialization call. There are
certain methods to meticulously guard against code injection, such
as input sanitization, code signing and whitelisting. Despite the
techniques that exist to thwart code injection, such attacks con-
tinue to occur at an increasingly alarming rate. September 2018
alone saw numerous noteworthy code injection attacks:

• Scarma Labs published a white-paper before blackhat 2018 that
described a PHP vulnerability that has gone unpatched and un-
reported for over a year since they first notified various services
of the issue, WordPress, the most used CMS on the internet, as
of a few weeks after the reports, had still not issued a fix for the
vulnerability which allows code injection.

• A zero-day bug allowed hackers to access CCTV surveillance
cameras, and subsequent code injection and remote code exe-
cution allowed hackers to gain access to user accounts as well
as change passwords.

• A Remote Code Execution vulnerability existed in the widely
popular Duplicator WordPress plugin that affected many users,
this was patched September 5th, 2018.

Needless to say, this exploit is hardly a thing of the past.

Equifax is probably the most potent example of code injection that
led to an incredibly devastating remote code execution attack. This
mega-breach resulted in potentially 143 million Americans’ most
sensitive personal information being exposed. Equifax utilized

Apache Strut’s as its framework for creating Java web applica-
tions. The parser this uses—Jakarta—contained the security flaw.
This flaw was patched prior to the breach, but the patch was never
applied.

The Jakarta parser had a feature that allows you to deserialize
XML into Java objects. A simplified version looks like this:

<object class=”io.polyverse.Person”>
	 <field	name=”Name”>Archis</field>
	 <field	name=”City”>Seattle</field>
</object>

All someone had to do was try to instantiate an internal object:

<object	class=”java.system.Exec”>
	 <field	name=”Command”>/bin/rm</field>
	 <field	name=”Params”>-rf</field>
</object>

The Struts vulnerability allowed any and all objects to be instan-
tiated by default when no whitelist/blacklist was provided. The
hackers were able to inject code and execute it remotely.

This is part of a practice that Polyverse calls DevSecOps. Safe
defaults by developers that prevent dangerous execution paths
from being followed. The aforementioned flaw was widely exploit-
ed despite a corrective patch being published the same day the
vulnerability was announced to the public. An extreme, but all too
real example of someone capitalizing on an exploit of this nature.

Code Injection Attacks

1 https://cdn2.hubspot.net/hubfs/3853213/us-18-Thomas-It’s-A-PHP-
Unserialization-Vulnerability-Jim-But-Not-As-We-....pdf

2 https://threatpost.com/zero-day-bug-allows-hackers-to-access-cctv-
surveillance-cameras/137499/

3 https://www.wordfence.com/blog/2018/09/duplicator-update-patches-
remote-code-execution-flaw/

4POLYVERSE.COM

WHITE PAPER POLYSCRIPTING

Rather than endlessly stressing about patching and attempting
to juggle all of the vulnerabilities exposed via your application’s
attack surface, Polyscripting removes the prerequisite mechan-
ics that allow such attacks to occur. This ensures that even when
safeguards prove ineffective, the attack vector was previously
undiscovered, or a patch was not applied in a timely manner, the
attack will simply not work.

Applying the idea of Moving Target Defense, the question to ask
is what kind of homogeneity allows for malicious code injection?
What makes code injection and remote code execution possible as
a whole? What information does a malicious actor have to gather
that allows them to exploit a third party’s assets?

There are two assumptions made during this kind of attack: First,
that malicious code can be injected into the system, and second,
that the malicious code can be remotely executed.

Polyscripting negates that second assumption. Today, remote code
execution and code injection attacks are possible because a hack-
er can write injectable code, upload it to a server, and execute it. In
this scenario, the server understands the hacker’s code in the ex-
act same way it understands valid code because they are written in
the same language, with the same syntax. This allows the attacker
to derive value from the injection. The hacker’s roadmap relies on
the successful execution of their code. If a server contains a PHP
interpreter, then it has the capacity to parse and execute any PHP
code.

What if that wasn’t the case? If a server was unable to execute in-
jected code, then this attack vector as a whole would be rendered
ineffective. Without impacting functionality, Polyscripting gives
each website a unique instance of a programming language. This
kind of diversity renders that second crucial assumption, that the
attacker will be able to execute the code they have injected, false.

Polyscripting takes a programming language and scrambles
(explained later but understanding scrambling as randomization
will suffice for now) the syntax and grammar within the source for
that language before the interpreter is compiled. The output is a
dictionary that is used to transform all necessary source code be-
fore it runs in production. This results in an application that has its
own unique implementation of a language, as well as the match-
ing interpreter. The new interpreter no longer understands the
original syntax and grammar of the original language. It will only

execute the source code that matches the newly generated unique
interpreter. Additionally, this process can be repeated on demand,
adding additional layers of defense, making time an ally to a sys-
tem’s defenses through the use of regular intervals at which the
interpreter and source code undergo polyscripting. This process
emulates a moving target, remapping the application’s address
space so frequently that proper enumeration, crafting, and execu-
tion of an exploit becomes impractically difficult. This schews the
effort-to-reward ratio so that it is no longer in a hacker’s favor.

It comes down to cause and effect. Whether the cause of code
injection is exploiting broken deserialization methods, a legacy
vulnerability in a plugin, or an unknown language vulnerability,
the responsibility to guard against these falls on the programmer.
However, hackers are creative, and even the “most securely writ-
ten” of programs get hacked. Just look at Facebook, Playstation,
Equifax or Target. All companies with massive security teams that
genuinely put in the research, time, and effort to stop the cause
of these attacks, yet they still happen. Polyscripting is a way to
stop this effect. Normally, the effect of a successful code injection
attack would be the execution of the malicious code, with Poly-
scripting a syntax error gets thrown and no malicious code is run;
stopping the malicious effect.

Standard Workflow

In a basic workflow for a standard website running PHP, the
PHP interpreter is compiled and loaded onto the web server. The
website’s source code is also pushed to the same server. The PHP
interpreter then parses and interprets the source code before
sending the result elsewhere: to a user, browser, database, etc.

At a very basic level, this is a two-step process:

Polyscripting: An Introduction

5POLYVERSE.COM

WHITE PAPER POLYSCRIPTING

Polyscripting Workflow

Polyscripting only adds one additional layer to this deployment
process. The PHP source code gets scrambled to the polyscripted
version and the websites source code gets scrambled to match
the unique instance of PHP that was generated. The interpreter
for the language (PHP) is changed at compile time and, ideally, the
scrambled dictionary is only accessed and only exists before being
deployed to a web server.

Language Scrambling

The process of scrambling a language is beautifully simple. The
make-up of a programming language is contained within its syntax
and grammar. The keywords and syntax of a language are defined
and compiled to make up the words and ordering of word-tokens
that a language understands. Programs are then parsed based on
this lexical syntax to generate the grammar the further defines a
language.

The values of the keywords themselves are arbitrary in any given
language. Keywords are defined for the convenience of those writ-
ing the code. If you think of these words as just a means to write
a language, the values themselves are random. Where “echo” is
defined in the lexical grammar, a replacement could be defined
with any randomized value. If you replace “echo” in the lex file
with “foo” and then run the code: foo “hello world,” it will echo
the string given. However, if you try to run the code: echo “hello
world”, a syntax error will be thrown. The language no longer
understands “echo” but treats the command “foo” as it would
previously have treated “echo”.

The first step of Polyscripting is to replace all the keywords within
a lex file and scramble them to randomized strings. Since the
source code will only run scrambled on the deployment server,
the development code will all be written in the standard language.
During the process of scrambling, a dictionary will also be built
with the instructions to transform the source code to the matching
scramble.

Scrambled Lex File

The result of scrambling these keywords is a language interpreter
that understands only unique strings as its reserved keywords.
While no longer understanding the original keywords. “Use” is now
an unparsable command, but nhZjBhADI will be linked to the same
functionality. Below is a snippet from the PHP lex file before and
after scrambling.

If a malicious actor was able to get a piece of code injected within
a website that has been polyscripted, accessing that code will re-
sult in a syntax error. Not only does this stop the attack, but it also
acts as a means of detection and notification for attacks.

6POLYVERSE.COM

WHITE PAPER POLYSCRIPTING

Transforming Source Code

The process of scrambling the language is, by its very nature, sim-
ilar to the process of transforming it. In order for an interpreter
to understand the code it is parsing; it needs to be transformed to
the proper scramble. While scrambling the interpreter a JSON file
is also built that contains a dictionary of the tokens to the scram-
bled values. This dictionary of values will act as instructions to
transform the application’s source code. However, this dictionary
does not sit on the server since scrambling and transforming take
place prior to deployment. This effectively makes the transforma-
tion an irreversible operation for the attacker. Without the dictio-
nary, the output is meaningless, and the attacker has no context.

Unlike varying types of encryption, there is no key or secret value
necessary to understand the scramble or for the program to run
properly. The default becomes the secure, Polyscripted state. After
scrambling and transforming, the dictionary can be deleted and
the Polyscripted code will still run identically to the language from
which it was derived. Unlike obfuscation, Polyscripting isn’t simply
making source code more difficult for someone to read. A site
with obfuscated code will still run the language normally, includ-
ing injected code. Polyscripting scrambles the language itself; it
changes the actual makeup of a language, the actual definitions
contained within a language’s pre-compiled source code.

Of course, it is worth noting that there are exceptions to this. Any
dynamically generated code will need to go through the process of
scrambling. That means, for example, if you are running Word-
Press and want to download a plugin, that plugin will not imme-
diately be recognized. For security, you will need to install the
plugin during the initial build of the site and before the scrambling
process. Alternatively, the plugin can access the transformation
dictionary directly during installation allowing for more flexibility
in this process, but the co-location of the transformation dictio-
nary and the application creates a new attack vector.

Instructions and Scrambling

The process of transformation traverses the source code of an app
and uses the instructions to change the syntax to match the prop-
er scramble. Much like the behavior of the interpreter will not be
affected, the scrambling of the source code will not affect how the
output and behavior of the code. The transformation only changes
the way the way that tokens will be recognized by the parser.

An interpreter parses a language by identifying the role of each
part of the code. Given certain rules within the interpreter (in fact,
the very rules that are changed during polyscritping) it is able to
recognize and tokenize certain values. By using those exact rules
contained within the interpreter the transformer simply parses
each PHP file, but replaces the original token values with the
scrambled ones provided by the instructions.

The language has a source of truth within it: its scanner and pars-
er. If we use these exact methods to transform the language to the
scrambled version, it ensures that it is being parsed exactly as it
will be when being executed. Because of this the logic of the code
does not change.

Put simply, the transformation process is done in such a way as to
not affect the output of the code itself. Though the keywords are
changing, the functionality of the instructions and the program-
ming language remains the same.

PHP as Proof of Concept

Polyscripting is an elegant solution to a real problem. Polyverse’s
current R&D team is working on developing a usable open-source
version of Polyscripting that scrambles PHP. The project is freely
available on Github under an MIT license. The purpose of this
project is to demonstrate a moving target defense strategy in a
real and meaningful way. Polyverse strives to make cybersecurity

7POLYVERSE.COM

WHITE PAPER POLYSCRIPTING

simple and manageable. PHP is only the first of many languages,
and the team wants to apply the same simple concept to other
programming languages.

This then begs the question: if the goal of Polyscripting is to apply
the concepts across a wide spectrum of vulnerable server-side
languages, why start with PHP? The answer is pretty simple:
because people use it. Over a quarter of the internet is using
WordPress to build out their websites. WordPress is—by a sig-
nificant margin—the most used CMS in the world. All while being
open source. It is also written in PHP. Not to mention the other
CMS players that use PHP. Regardless of the critiques it endures,
PHP is widely used because of this kind of popularity. It is also an
open source interpreted language with a grammar and syntax that
is accessible and easily manipulated, which is ideal for an open-
source proof of concept like Polyscripting.

Its popularity also makes PHP a heavily targeted language. The
previously mentioned exploits utilize PHP vulnerabilities to inject
malicious code. To further compound the issue, millions of sites
run antiquated versions of PHP that are no longer supported that
contain well-known vulnerabilities. To update an entire code base
is a task many are unable to take on due to a lack of resources,
whether financial, chronological, or otherwise, subsequently leav-
ing their product vulnerable to various threats.

PHP is the perfect language for demonstrating Polyscripting. Not
only because of the ease of implementation and its widespread
use, but because Polyscripting has the potential to solve meaning-
ful problems that application’s utilizing PHP encounter.

Polyscripted WordPress

Polyverse is a Gold level sponsor for the 2018 WordCamp con-
ference in Seattle, WA. Though the main Polyverse product is the
polymorphic version of Linux, Polyverse is sponsoring the event to
showcase Polyscripting. It may seem like an odd choice given that
Polyscripting does not relate to our keystone product, and it is an
open-source tool. With the end goal being to move from theoret-
ical concept, to actually stopping real-world attacks, we applied
Polyscripting to WordPress so others could utilize our very latest
security practices in tandem with one of their most commonly
used tools.

It is an idea that is powerful even in its infancy, but as more people
use and improve it, it has the potential to solve a significant prob-
lem.

To try out the WordPress demo and build a WordPress site lever-
aging Polyscripting as a defense mechanism checkout the open
source repo: https://github.com/polyverse/ps-wordpress.

It is Polyverse’s mission to create simple to use tools. With Poly-
scripting, WordPress can be deployed the same way as one might
normally do so. This entails building out the source code, scram-
bling the language and code, and running it. The Polyscripted
Wordpress container bundles all of this and makes deploying an
instance of Polyscripted Wordpress just as effortless as utilizing
the official Docker images to do so.

This is the most secure way of running Polyscripted WordPress.

However, even in this case, though not as secure, a site still reduc-
es its attack surface and increases the effort it would takes to craft
a successful code injection attack.

Conclusion

Polyscripting has the potential to be a powerful tool to defend
against code-injection attacks. Though scrambling keywords is
powerful, there are many other ways to increase the effectiveness
of Polyscripting. Scrambling more than just keywords, but also
built-in PHP functions, is a feature that would increase Poly-
scripting’s effectiveness and is a likely addition in the near future.
Similarly, scrambling more than the language tokens, but also the
grammar and the Abstract Syntax Tree of the language will add
an entirely new layer of security to any language Polyscripting is
applied to. Polyverse is creating a new standard to expect from
programming languages —Polyscripting capabilities.

8POLYVERSE.COM

WHITE PAPER POLYSCRIPTING

For more information, contact

sales-us@polyverse.com

or visit our website

https://polyverse.com

©2020 Polyverse Corp. All Rights Reserved. Polyverse and the Polyverse logo are registered trademarks of Polyverse in the
United States and other countries. All third-party trademarks are the property of their respective owners.

