
Compliant Database
DevOps

Whitepaper

How teams can balance the need to deliver
software faster with the requirement to
protect and preserve data

Introduction

Database DevOps is now a thing, as demonstrated by its inclusion
for the first time in DORA’s long-running Accelerate State of DevOps
Report. Now in its fifth year, the 2018 report calls out database
development as a key technical practice which can drive high
performance in DevOps

With new data protection laws coming into play, however, and consumers more aware
than ever before of how their privacy can be compromised, there is also a requirement for
companies to go one step further and adopt a compliant DevOps approach. One where
protecting data is baked into the software development process from the beginning, by
combining the agility of DevOps, the desire to include the database in DevOps, and the
necessity to secure data throughout development.

This whitepaper outlines how organizations can introduce compliant database DevOps by
transforming some of the processes involved in four key areas:

• Standardized team-based development
• Automated deployments
• Performance and availability monitoring
• Protecting and preserving data

Importantly, and perhaps conversely, the automation and audit trails this provides across
the database development cycle eases compliance so that organizations can deliver value
faster while keeping data safe.

2

https://cloudplatformonline.com/2018-state-of-devops.html
https://cloudplatformonline.com/2018-state-of-devops.html

Contents

Standardized team-based development
• Collaborative coding
• Secure coding
• Version control

Automated deployments
• Continuous integration
• Release management

Performance and availability monitoring
• Performance monitoring
• Compliance monitoring

Protecting and preserving data
• Masking data
• Provisioning masked database copies

Summary

4

7

10

12

14

Whitepaper Compliant database DevOps

Standardized team-based development

The way databases are developed has changed over the last few
years. Once the sole responsibility of Database Administrators and
database developers in siloed teams, application developers are
increasingly expected to write the code for the database as well as
the application

This was highlighted in Redgate’s 2018 State of Database DevOps Survey, which revealed
that 76% of respondents had developers in their team who work across both applications
and databases, and 75% also build the database deployment scripts.

In many ways, it had to happen because the faster speed of releases which DevOps
encourages means front-end and back-end development are now much more closely
connected.

The survey also showed, however, that the greatest challenge to integrating database
changes into the DevOps process was synchronizing them with application changes, and
overcoming the different approaches to development within multi-function teams.

The solution is to introduce collaborative coding, bake in security earlier to prevent issues
later in the development pipeline and, as DORA’s DevOps Report recommends, put changes
to the database into version control.

4

https://www.red-gate.com/solutions/database-devops/report-2018

Collaborative coding

Application developers typically use an imperative language like C# or Java, where the
sequence and wording of each line of code is critical. Relational databases, on the other
hand, use a declarative language like T-SQL, which describes what a program should do,
rather than how to accomplish it.

Because the syntax is not as strict, developers who work with T-SQL often have preferred
styles. Some, for example, prefer plain black type rather than seeing type in different
colors, others hate indents, and arguments about whether commas should be at the
beginning or the end of a line go on.

All of which can result in the code behind a database being muddled and difficult to
understand, particularly when different developers have worked on the same code base
over time. Where teams of developers are updating a database repeatedly, they can
collaborate much more easily if all of the code in the database is presented in the same
style.

SQL Prompt from Redgate can help here because it includes a useful feature where users
can code in the style they prefer and then change the code to the team’s standard style
with a couple of keystrokes. That way, the speed at which individual developers code is not
affected, but neither is the understanding of the whole body of code confused by lots of
different styles in play.

Secure coding

The introduction of DevOps to application development saw security shift left in
the development process. Rather than relying on a security review at the end of the
development cycle, tools like static code analyzers now test code as soon as changes are
made, catching errors earlier and minimizing problems at deployment.

Those code analyzers look for ‘code smells’ – errors in code which can affect
performance, as well as those which could be breaking changes. T-SQL has its own share
of code smells and SQL Prompt flags up potential errors and pitfalls in code as it is typed,
using a library of over 90 rules behind the scenes, and then explains what the issue is and
provides links to online documentation.

Whitepaper Compliant database DevOps

5

This can be particularly useful when first starting to code in T-SQL, or if there are specific
rules that have to be followed by everyone on the team. It also provides a quality control
gate at the point at which code is written so that before it is even committed, any potential
issues have been minimized.

Version control

Version control is standard in application development and involves developers checking
their changes into a common repository frequently during the development process. As a
direct result, everyone has access to the latest version of the application and it’s always
clear what was changed, when it was changed, and who changed it.

This is just as true for the database code, which should also be version controlled,
preferably by integrating with and plugging into the same version control system used
for applications. Developers might add a new table or stored procedure, amend a column
name, or update a foreign key constraint, for example. They can also change the static
data the database needs to function, like lookup values, constants or settings. By capturing
the changes in version control, one source of truth can be maintained, reducing the chance
of problems arising later in the development process, and also providing an audit trail of
every change that has been made.

Whitepaper Compliant database DevOps

6

Automated deployments

Introducing version control to database development brings many
advantages. Ad hoc changes and hot fixes are minimized, reducing
the chance the database will drift from its expected state. Every
developer works from the same source of truth, so there are fewer
errors when different development branches are merged. And an
audit trail of who made what changes, when, and why is provided,
which can be useful in demonstrating compliance.

It also opens the doors to the automation that DevOps encourages, while making the
development process more secure.

7

Continuous integration

Once version control is in place, continuous integration (CI) can be used to trigger an
automated build as soon as code changes are checked in, which tests the changes and
flags up any errors in the code. If a build fails, it can be fixed efficiently and re-tested, so a
stable current build is always available.

A typical CI server in application development executes a series of commands that build
the application. These commands clean directories, compile the source code, and execute
unit tests. Where applications rely on a database back-end, the CI server can also perform
the additional tasks of testing and updating the database.

Redgate’s SQL Change Automation, for example, works with any CI server that can run
PowerShell. There are also extensions for CI build servers like Azure DevOps, Jenkins or
TeamCity and, on each check-in to version control (or however often it is set to run), they
can take care of the whole database CI process.

The artifact that is published at the end of the process will include the deployment script
with updates to the database schema and any version controlled static data. It also
includes additional information to make sure the release is safe, including any warnings
that might result in data loss, a detailed diff report so you can see exactly what objects are
being changed and how, and information to check that the schema hasn’t drifted since the
deployment script was created.

This artifact is an important part of the release process because it represents a version
that has been validated through testing as part of the CI process, and is a consistent
starting point for the release of database changes to subsequent environments.

Whitepaper Compliant database DevOps

8

Release management

Although the CI environment often mirrors the production environment as closely as
possible for applications, this is rarely the case for databases. The artifact published at
the CI stage therefore needs to be deployed against a staging database, which should be
an exact copy of the production database, or as near as possible. This will generate the
deployment script for that environment, and the whole artifact can then be reviewed to
confirm it is production-ready. A lot of teams still have a manual approval step in place for
a Database Administrator to review and give the final sign-off before going to production.
It’s easy to do this in a release automation system, which provides another audit trail of the
changes and who approved them.

SQL Change Automation also integrates with any release automation system that can run
PowerShell, and there are extensions for Octopus Deploy and Azure DevOps to make the
setup easier.

This gives organizations the option to include the release of database changes with
the workflow already in place for the application, rather than have to introduce a new,
unfamiliar one.

Whitepaper Compliant database DevOps

9

Performance and availability monitoring

It is normal practice to monitor databases to keep an eye on factors
like memory utilization, I/O bottlenecks and growth trends. The
increase in the size and complexity of SQL Server estates has already
prompted many organizations to introduce third party tools to give
them a wider and deeper picture. Adding DevOps to the equation
makes it even more important.

While the automation which DevOps introduces to many parts of database development
minimizes errors and gives much better visibility across the whole process, there is a
flipside. Instead of releasing changes to the database once or twice a quarter, changes
can now be released at any time. It is therefore important to monitor your system to
understand if any releases are causing a problem so that they can be fixed quickly.

10

Performance monitoring

If databases are updated more often, performance monitoring becomes crucial. Even
though the changes will probably be the small, iterative ones which DevOps encourages,
there is still a chance they will cause problems when they are deployed, particularly if
databases are under heavy load or there are differences between environments.

Given the importance the database has to many business operations, organizations should
be able to spot queries having an unusual impact, deadlocks and blocking processes –
and be able to drill down in seconds to the cause.

Many companies which have adopted DevOps for the database have also found it usual
to share performance monitoring screens with development teams on a permanent basis.
That way, the effect that deployments have on performance can be seen as soon as
changes hit production. Redgate’s SQL Monitor, for example, shows the database releases
on the same timeline with the performance information so it’s very easy to see if a release
had a negative impact and recover from this quickly.

Compliance monitoring

New data protection regulations now require organizations to monitor and manage access
to personal data, ensure data is identifiable, and report when any breaches occur. This
makes an advanced monitoring solution a necessity in most cases, in order to monitor the
availability of servers and databases containing personal data.

Given the added complexity it brings to monitoring, organizations should look for a
solution that offers the extra capability but makes taking advantage of it easier. By,
for example, allowing all SQL Server instances, availability groups, clusters, and virtual
machines to be viewed on one central web-based interface. And by having customizable
alerts that be configured to suit SQL Server estates of any size and complexity.

Whitepaper Compliant database DevOps

11

Protecting and preserving data

Including the database in DevOps enables the full advantages of
DevOps to be realized without the database causing a bottleneck. The
new requirement for compliant DevOps, however, which requires data
to be protected all the way through the development process, adds
another factor.

Redgate’s 2018 State of Database DevOps Survey showed that 67% of developers want a
copy of the production database in their development, test, or QA environments to ensure
changes will work once deployed. This helps find problems sooner before they get to
production, yet those same production databases invariably contain the sensitive data that
needs to be protected.

12

Masking data

Some organizations get around the problem by having a version of the production
database with a limited dataset of anonymous data to develop and test against. Testing
changes against a database that is neither realistic, nor of a size where the impact on
performance can be assessed, can lead to problems during deployments, however.

Other organizations mask the data in a copy of the production database by replacing
columns with similar but generic data, but this will age quickly as ongoing changes are
deployed to the live database.

This is where data masking tools which pseudonymize and anonymize data are now being
adopted to provide database copies that are truly representative of the original and retain
the referential integrity and distribution characteristics. Indeed, Gartner’s 2018 Market
Guide for Data Masking predicts that the percentage of companies using data masking or
practices like it will increase from 15% in 2017 to 40% in 2021.

Provisioning masked database copies

While data masking can help when provisioning copies of production databases for
use in development and testing, it can also lead to resource issues. It is not unusual for
databases to be 1TB in size or more, and provisioning copies to multiple developers can
take up a lot of time as well as space.

This is where the tried and tested virtualization technologies built into the Windows
operating system come into place. SQL Clone from Redgate uses it to create copies, or
clones, of databases in seconds which, while only around 40MB in size for a 1TB database,
work just like normal databases and can be connected to and edited using any program.

Redgate integrates this with data masking capabilities to provision masked database
copies with a process that is simple, fast repeatable, transparent, and auditable.

Whitepaper Compliant database DevOps

13

https://www.gartner.com/doc/3883287
https://www.gartner.com/doc/3883287

Summary

These are interesting – and challenging – times for database
development.

DevOps has entered the conversation and provided a route to removing the database
as the bottleneck in delivering value. By encouraging collaboration and integration, and
moving to releasing small changes, often, database deployments can move from worrying,
infrequent problems to a standard part of the development and release workflows.

Data privacy and protection concerns, however, have interrupted the conversation with the
GDPR now being joined by the upcoming Stop Hacks and Improve Electronic Data Security
(SHIELD) Act in New York, the Consumer Privacy Act in California, and India’s Personal
Data Protection Bill, among many others.

This whitepaper demonstrates, however, that DevOps and data privacy do not need to
oppose each other. Rather, they can complement one another. The automation and audit
trails that DevOps processes introduce to database development can ease compliance
with data protection regulations and enable organizations to balance the need to deliver
software faster with the requirement to protect and preserve personal data.

To find out more about the benefits of Compliant Database DevOps
go to www.red-gate.com/DevOps

Whitepaper Compliant database DevOps

https://www.red-gate.com/solutions/overview

