
Essential practices for
high performing Database
DevOps teams

WHITEPAPER

Compliant
Database DevOps

Essential practices for high performing Database DevOps teams

Introduction	 3

Dedicated development environments 	 4
Data virtualization 			 4

Data masking 	 5

Automation and self-service 	 6

Version control 	 7
Aligning database and application code	 7

Improving visibility, compliance, and auditing	 7

Establishing a single source of truth 	 8

Continuous integration 	 9
Building the database from scratch 	 9

Automated testing 	 10

Capturing upgrade scripts 	 10

Repeatable database deployments 	 12

Customer success stories 	 13

Summary 	 14

Redgate’s Compliant Database DevOps solution 	 15

Essential practices for high performing
Database DevOps teams

Essential practices for high performing Database DevOps teams

3

Introduction

To enable high performance, teams should implement a
core set of industry best practices to achieve Continuous
Delivery also in database development. This ‘kernel’ of
Database DevOps leads to better alignment between
database and application teams and increases the
throughput of higher quality releases.

As a result, software teams can meet customer demands quicker and gain a competitive
advantage over organizations where the database is a bottleneck.

This whitepaper describes four key practices for database teams to adopt when evolving
their database development process to follow a DevOps approach. For teams who are
already following a DevOps approach it serves as a way to check that best practices
are being following.

The four essential practices for high-performing Database DevOps teams are:

•	 Dedicated development environments

•	 Version control

•	 Continuous integration

•	 Repeatable deployments

Essential practices for high performing Database DevOps teams

4

Dedicated development environments
One of the most obvious differences between application and database development
is the split in how developers are organized to carry out their work. It’s unheard of on an
application team for developers to work on a central codebase without local versions, yet
46% of developers work in this way when it comes to database development.

Having a local, private database to work with empowers developers to try out new
approaches without impacting the work of others. They provide developers with
sandboxes in which to run experiments safely and test code in isolation before sharing
it with the rest of the team.

Dedicated development environments are foundational for agile development and
DevOps. But moving toward this way of working is not a trivial process for database
teams that need to balance their resources in terms of time, storage cost, and
information security. The following techniques, however, help to facilitate the process:

•	 Data virtualization
•	 Data masking

•	 Automation and self-service

Data virtualization
In comparison to application code, databases are large and complex, and equipping
every developer with their own personal copy of the production database could mean
allocating significant storage. For many organizations this alone blocks dedicated
database development environments. Data virtualization technology should be employed
to reduce the size of database copies and make efficient use of infrastructure resource.

“Traditionally, database work was the one area where
there was less freedom to run quick experiments. Now,

suddenly, it’s very easy to create two clones, side by side,
when I’m working on two different projects, or wanting
to try out two different ways of doing something. I think

going forward that sort of freedom is going to change the
way the team approaches database work, and allow us to

deliver changes much more quickly.”

Daryl Griffiths, Principal Software Engineer, Moody's Analytics

Essential practices for high performing Database DevOps teams

5

Data virtualization results in lightweight database clones that can be provisioned to
developers quickly without requiring large amounts of storage. Virtual clones work
just like normal databases – they can be developed on and tested, and their updates
deployed upstream – but their tiny storage footprint makes them incredibly agile and
cost effective. Because the master dataset they reference can be a complete copy
of the production environment, each clone created from it is fully representative and
referentially intact.

Development teams who can work with production datasets see an increase in
productivity and a reduction in data-related code defects. Realistic datasets enable
developers to validate their work at the earliest possible opportunity, test whether they
produce the desired results, and estimate any impact on performance. By shifting testing
left in this way, any issues can be fixed before changes are shared with other developers
or deployed to the next testing environment. . Reducing multi-TB databases to tens of
MBs also enables developers to have many local copies for greater flexibility in testing.

Data masking
With realistic test data, developers can take greater ownership of their changes, and not
need to rely on others picking up bugs later.

However, spreading copies of production data around development and testing
environments risks non-compliance with data privacy regulations, and leaves
organizations vulnerable in the event of a data breach.

Sensitive data should be de-identified, or masked, before being delivered, so that
developers can work with datasets that accurately reflect production without
compromising information security and compliance. Masking data after it’s been copied
to development environments isn’t recommended because wherever confidential
information lives, even for a short while, there’s the potential for unauthorized access or
an accidental leak to occur.

“Test data (or copy data) virtualization is a technology that is

increasingly popular, when used in combination with Static

Data Masking, to speed up the provisioning of and updates to

target environments, in addition to significantly reducing the

amount of storage required by these environments.”

Gartner 2018 Market Guide for Data Masking,

Marc-Antoine Meunier, Ayal Tirosh, July 20, 2018

Essential practices for high performing Database DevOps teams

Automation and self-service

Increasing the number of developer databases adds additional overhead for DBAs when
it comes to refreshing environments with the latest test data. Data virtualization may
enable databases to be refreshed in seconds, but responding to tickets for new data still
adds to an already busy to-do list. Automation should be used to deliver fresh data to
developers and keep development environments in sync with production.

Data virtualization also opens opportunities for greater agility within the team by way of
self-service. The images from which virtual copies are created provide a single source
of truth so that developers only receive data as intended – whether this is masked for
compliance or specific to their project.

By establishing this control, it’s safe to let developers pull a copy of the database
they need on demand. This gives developers the freedom to run their own tests and
then quickly reset the database back to the original state, improving the quality of the
software in a shorter period.

Key takeaways

Data virtualization allows developers to have multiple local copies without
placing a demand on infrastructure resources.

Data masking enables developers to work with realistic production
datasets without risking noncompliance.

Automation and self-service remove bottlenecks to refresh test data and
are enabled by data virtualization and data masking.

SQL Provision enables dedicated
database environments and fast delivery
of compliant data for development, test,
and CI.

Redgate solutions that can help

6

Data Masker allows you to replace
sensitive data with realistic, anonymized
test data.

Essential practices for high performing Database DevOps teams

7

Version control
Dedicated environments empower developers to experiment and seek out better
solutions to problems, leading to higher quality releases and faster throughput of
changes as a result of early testing. Version control must be implemented to manage
multiple changes happening in parallel across the development team.

Version control systems have long been an established part of the application
development process but for database teams it’s a more recent addition to the
toolkit. Redgate’s 2019 State of Database DevOps Report found that 45% of database
environments lack version control, compared with only 17% for application code.

Version control is foundational for Database DevOps, and helps to advance software
development by:

•	 Aligning database and application code

•	 Improving visibility, compliance, and auditing

•	 Establishing a single source of truth

Aligning database and application code
Standardizing development practices and processes helps to improve quality and
increase deployment frequency for software teams. An important step forward in
standardization is to store database code and modification scripts in version control
along with application code. This provides teams with the foundation for collaborating
on software updates, enables changes to be merged more easily, and facilitates better
coordination between teams when troubleshooting issues

Improving visibility, compliance, and auditing
Version control provides a view into development work, its progress, who’s doing it, and
why. It also maintains detailed change histories and can be integrated with issue tracking
and project management systems. Because the history it provides is incremental,
version control lets developers explore different solutions and roll back safely in the case
of errors while maintaining the referential integrity of the database.

Another important benefit of having an automatically generated history of changes is
that it forms an audit trail for database code. This information is useful in the event of a
data breach or compliance audit.

Essential practices for high performing Database DevOps teams

Redgate solutions that can help

Establishing a single source of truth
Version control manages the merging of changes from developers to establish a ‘single
source of truth’ that can be deployed to testing environments and eventually released
to production. The ability to merge changes easily is especially important for team
members working in dedicated environments or based in different locations.

Branching features in version control enables developers to experiment in an isolated
way, so that their changes don’t impact others when they’re under early development. A
dedicated development environment is needed for database changes because using a
branch with a shared database environment exposes the changes to others.

By determining a single, stable version of the database, complex processes become
easier to automate and repeat, and deployments more predictable. Synchronizing
application and database changes also becomes easier, enabling database and
application code to be tested together so that issues are resolved earlier.

Key takeaways

Synchronizing application and database code speeds up the development
and testing cycle leading to higher quality releases.

Version control provides an audit trail of database development, providing
a detailed history of who changed what, when, and why.

Version control enables multiple changes to be merged easily when
developers are working in dedicated environments.

Redgate Deploy offers a versioned
migration framework for 20 relational
database systems as well as object level
versioning and deployment tracking /
auditing for SQL Server and Oracle.

8

Essential practices for high performing Database DevOps teams

9

Continuous integration
Transitioning to dedicated development environments and implementing version control
are the two processes that set the foundation for Database DevOps. They empower
developers to elevate the quality of their work and provide control and visibility for DBAs.

With this foundation in place, automated testing and validation is now possible through
the application of continuous integration (CI). The purpose of the CI process is to ensure
that a build, test, and upgrade package process is performed in a known and repeatable
fashion. Every change checked into the version control system results in an automated
CI process execution that provides rapid feedback to developers, allowing fixes to occur
immediately and successful builds to progress along the release pipeline.

A CI process consists of the following three stages:

1.	 Building the database from scratch

2.	 Automated testing

3.	 Capturing upgrade scripts

Building the database from scratch
Often when code is executed on a development database, it’s to build objects for use by
an application. However, due to refactoring, the assembly of these objects might not be
accurate, since other dependent objects may no longer work correctly. It’s also common
that a last-minute change to complex database scripts results in invalid code.

A build process for a database should involve rebuilding all objects, allowing
dependencies to be resolved and checked by the database management system. These
objects can be built from scratch in a new database, as we recommend at Redgate, or
changes can be applied to a database at a known state while tests are executing against
all other objects.

In either case, the process should detect any issues with building the database. If it does,
the CI process will fail. If the process succeeds, developers can be confident that the
database will be structurally intact and can be rebuilt from scratch.

It’s recommended to commit code into version control frequently to speed up the
CI process and break updates down into smaller chunks to reduce the number of
conflicting changes.

Essential practices for high performing Database DevOps teams

10

Automated testing
The next stage of a CI process involves running automated tests. These tests may be no
different to the tests developers run on their own machines, but the benefit with using a
CI process to run them is that the tests are always executed.

A CI process removes the risk of forgetfulness on the part of a busy developer, and
ensures all the necessary tests are executed every time against all the code. This
contrasts with most manual testing, which often limits testing to the scope of the
objects being changed, ignoring the potential cascading effects on other pre-existing
objects.

Data virtualization is incredibly beneficial to the CI process as it enables production
copies to be spun up without the infrastructure overhead. By mirroring testing
environments with production, data-related issues can be discovered earlier, leading to
higher pass rates for releases.

Capturing upgrade scripts
The final step of the CI process is the production of a package that can be executed
against test, QA, staging, UAT, and ultimately, production environments. This package
should be captured and stored without changes and used as the basis for testing
updates in different non-production environments. If further testing uncovers problems,
these should be fixed in the development environment, committed to version control and
the entire CI process rerun.

There are numerous ways to produce this package, but the assembly of the script should
be through an automated process that ensures the package is produced in the same way
each time the CI process runs.

Essential practices for high performing Database DevOps teams

Key takeaways

A CI process automatically validates schema changes so developers have
confidence the database will be structurally intact and can be rebuilt from
scratch.

A CI process ensures all necessary tests are executed every time against
all the code and removes the risk of human error.

A CI process results in the production of a package that can be executed
against testing environments and ultimately released to production.

SQL Provision creates lightweight
database clones to validate changes
as part of this process.

Redgate Deploy offers advanced features to
enable Continuous Integration of database
changes. It is also integrated with the most
popular application CI tools such as Octupus
Deploy, Teamcity and many more.

Redgate solutions that can help

11

Essential practices for high performing Database DevOps teams

Redgate solutions that can help

Repeatable database deployments
Deploying database changes to new environments is a is a critical activity with inherent
risks. Many development teams dread deploying changes to a production database
because of the potential for problems or downtime.

By deploying database updates to testing environments alongside application code,
errors are uncovered long before they reach customers. And the more environments a
deployment of a potential release candidate can be tested on, the greater the chance
that those same changes can be deployed successfully to the production database.

Standardizing the configurations of database environments along the release pipeline
and automating the steps to deploy software ensures that the process is performed
consistently every time. Each successful deployment to a new environment increases
the confidence and likelihood of a successful release to production.

It’s essential that a release management tool is used to control this process and ensure
that the packages produced by the CI process are tracked. This way, if a package deployed
to a test environment passes, the same package can be deployed to further environments.
If the package fails, a new one is created through the development, to version control, to CI
process. Any issues with the deployment process should be logged and captured, so that
they’re available for development and operations teams to review and correct.

 Key takeaways

Automating database deployments to testing, QA, and other environments
enables changes to be fully checked before risking a release to production.

Standardizing the configurations of database environments throughout the
release pipeline and automating the steps to deploy software ensures that
the process is performed consistently.

Automated deployments should be facilitated by a release management
tool which tracks packages produced by the CI process.

Redgate Deploy integrates with release
management systems to automate
database deployments safely with built-in
review steps.

12

Essential practices for high performing Database DevOps teams

13

Customer success stories

PASS no longer faces issues with merge conflicts, and have
transformed deployments from long, worrying evenings to a smooth,
error-free process.

www.redgate.com/PassCaseStudy

Developers at Moody’s Analytics can self-serve database copies,
which has contributed significantly to the speed and efficiency of
their database development and testing processes.

www.redgate.com/MoodysAnalytics

Essential practices for high performing Database DevOps teams

14

Summary
The essential practices that high-performing Database DevOps teams follow are:
dedicated development environments, version control, continuous integration, and
repeatable deployments. By adopting these four practices, database teams can align
their development and release process with application teams to increase throughput
and success rates.

Dedicated development environments are foundational for DevOps but making the
switch isn’t trivial for database teams. Data virtualization should be used to overcome
challenges with disk space and refresh times. Combined with data masking to deliver
compliant test data to developers, this opens opportunities for automation and self-
service as well.

Version control has long been an established part of the development process for
application teams, but for database teams it’s a more recent addition to the toolkit.
It’s necessary for merging changes and provides an audit trail of database updates
for visibility, troubleshooting, and compliance. Version control aligns database and
application code and provides a single source of truth for continuous integration and
database delivery.

With dedicated development and version control in place, database teams are able to
make and share changes faster. It’s only natural, then, that automation should be used
to provide fast feedback on their work. Continuous integration takes the code in version
control and runs it through an automatic build and testing process, allowing fixes to
occur immediately and successful builds to progress along the release pipeline. The
output of this entire process is a package that can be deployed to test, QA, staging, UAT,
and ultimately, production environments.

Getting this all set up will take some work, but the pay-off is the ability to release updates
faster with a higher degree of success – not just for the database, but for the software
as a whole. To succeed in today’s digital arena, organizations must be set up to deliver
ongoing value to customers. Those who implement Database DevOps are better able
to gain a competitive advantage, especially against organizations that experience a
bottleneck in their release cycle caused by the database.

“With techniques such as Continuous Delivery becoming more
mainstream, automated database migrations are a baseline

capability for many software teams.”

Erik Dörnenburg, Head of Technology Europe

Essential practices for high performing Database DevOps teams

Redgate’s Compliant Database
DevOps solution
Redgate helps IT teams balance the need to
deliver software faster with the need to protect
and preserve business critical data.

Your business benefits from a DevOps approach to database
development, while staying compliant and minimizing risk.

Redgate's Compliant Database DevOps solution gives you an end-
to-end framework for extending DevOps to your database while
complying with regulations and protecting your data.

www.redgate.com/DevOps

https://www.red-gate.com/products/dba/sql-monitor/

